Machine|k-means算法详解

k-means算法详解 1、算法简介 k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。
k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-means算法又称为k-均值算法。k-means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。
2、算法详解 【Machine|k-means算法详解】k-means算法以距离作为数据对象间相似性度量的标准,通常采用欧氏距离来计算数据对象间的距离。下面给出欧式距离的计算公式:
Machine|k-means算法详解
文章图片

其中,D表示数据对象的属性个数。
??k-means算法聚类过程中,每次迭代,对应的类簇中心需要重新计算(更新):对应类簇中所有数据对象的均值,即为更新后该类簇的类簇中心。定义第k个类簇的类簇中心为CenterkCenterk,则类簇中心更新方式如下:
Machine|k-means算法详解
文章图片

其中,Ck表示第k个类簇,|Ck|表示第k个类簇中数据对象的个数,这里的求和是指类簇Ck中所有元素在每列属性上的和,因此Centerk也是一个含有D个属性的向量,表示为Centerk=(Centerk,1,Centerk,2,…,Centerk,D)。
??k-means算法需要不断地迭代来重新划分类簇,并更新类簇中心,那么迭代终止的条件是什么呢?一般情况,有两种方法来终止迭代:一种方法是设定迭代次数T,当到达第T次迭代,则终止迭代,此时所得类簇即为最终聚类结果;另一种方法是采用误差平方和准则函数,函数模型如下:
Machine|k-means算法详解
文章图片

其中,K表示类簇个数。当两次迭代J的差值小于某一阈值时,即ΔJ<δΔJ<δ时,则终止迭代,此时所得类簇即为最终聚类结果。
??k-means算法思想可描述为:首先初始化K个类簇中心;然后计算各个数据对象到聚类中心的距离,把数据对象划分至距离其最近的聚类中心所在类簇中;接着根据所得类簇,更新类簇中心;然后继续计算各个数据对象到聚类中心的距离,把数据对象划分至距离其最近的聚类中心所在类簇中;接着根据所得类簇,继续更新类簇中心;……一直迭代,直到达到最大迭代次数T,或者两次迭代J的差值小于某一阈值时,迭代终止,得到最终聚类结果。算法详细流程描述如下:
Machine|k-means算法详解
文章图片

??k-means算法聚类过程示意图,如下:
Machine|k-means算法详解
文章图片

其中,黑色圆点代表类簇中心,白色圆点代表待聚类数据对象。
3、算法优缺点分析

  • 优点:
    ??算法简单易实现;
  • 缺点:
    ??需要用户事先指定类簇个数K;
    ??聚类结果对初始类簇中心的选取较为敏感;
    ??容易陷入局部最优;
    ??只能发现球型类簇;
4、改进算法k-means++ k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。算法的描述如下:
1、从输入的数据点集合中随机选择一个点作为第一个聚类中心
2、对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
3、选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
4、重复2和3直到k个聚类中心被选出来
利用这k个初始的聚类中心来运行标准的k-means算法
Machine|k-means算法详解
文章图片

    推荐阅读