kmean算法理解

先放一段其他大神的理解,讲的已经很清楚了,后面结合代码说说我的理解

在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
问题 K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法(Wikipedia链接)

K-Means要解决的问题
算法概要
这个算法其实很简单,如下图所示:

从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。
然后,K-Means的算法如下:

  1. 随机在图中取K(这里K=2)个种子点。
  2. 然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)
  3. 接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)
  4. 然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。
这个算法很简单,但是有些细节我要提一下,求距离的公式我不说了,大家有初中毕业水平的人都应该知道怎么算的。我重点想说一下“求点群中心的算法”。
求点群中心的算法 一般来说,求点群中心点的算法你可以很简的使用各个点的X/Y坐标的平均值。不过,我这里想告诉大家另三个求中心点的的公式:
1)Minkowski Distance公式——λ可以随意取值,可以是负数,也可以是正数,或是无穷大。
【kmean算法理解】
2)Euclidean Distance公式——也就是第一个公式λ=2的情况

3)CityBlock Distance公式——也就是第一个公式λ=1的情况

这三个公式的求中心点有一些不一样的地方,我们看下图(对于第一个λ在0-1之间)。

(1)Minkowski Distance(2)Euclidean Distance(3) CityBlock Distance
上面这几个图的大意是他们是怎么个逼近中心的,第一个图以星形的方式,第二个图以同心圆的方式,第三个图以菱形的方式。
K-Means的演示
如果你以”K Means Demo“为关键字到Google里查你可以查到很多演示。这里推荐一个演示:http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
操作是,鼠标左键是初始化点,右键初始化“种子点”,然后勾选“Show History”可以看到一步一步的迭代。
注:这个演示的链接也有一个不错的K Means Tutorial。
下面是代码:
#include #include #include #include #include #include #define k 3//簇的数目 using namespace std; //存放元组的属性信息 typedef vector Tuple; //存储每条数据记录int dataNum; //数据集中数据记录数目 int dimNum; //每条记录的维数//计算两个元组间的欧几里距离 double getDistXY(const Tuple& t1, const Tuple& t2) { double sum = 0; for(int i=1; i<=dimNum; ++i) { sum += (t1[i]-t2[i]) * (t1[i]-t2[i]); } return sqrt(sum); }//根据质心,决定当前元组属于哪个簇 int clusterOfTuple(Tuple means[],const Tuple& tuple){ double dist=getDistXY(means[0],tuple); double tmp; int label=0; //标示属于哪一个簇 for(int i=1; i clusters[],Tuple means[]){ double var = 0; for (int i = 0; i < k; i++) { vector t = clusters[i]; for (int j = 0; j< t.size(); j++) { var += getDistXY(t[j],means[i]); } } //cout<<"sum:"<& cluster){ int num = cluster.size(); Tuple t(dimNum+1, 0); for (int i = 0; i < num; i++) { for(int j=1; j<=dimNum; ++j) { t[j] += cluster[i][j]; } } for(int j=1; j<=dimNum; ++j) t[j] /= num; return t; //cout<<"sum:"< clusters[]) { for(int lable=0; lable t = clusters[lable]; for(int i=0; i& tuples){ vector clusters[k]; //k个簇 Tuple means[k]; //k个中心点 int i=0; //一开始随机选取k条记录的值作为k个簇的质心(均值) srand((unsigned int)time(NULL)); for(i=0; i= 1) //当新旧函数值相差不到1即准则函数值不发生明显变化时,算法终止 { cout<<"第 "<<++t<<" 次迭代开始:"<>fname; cout<>dimNum; cout<>dataNum; ifstream infile(fname); if(!infile){ cout<<"不能打开输入的文件"< tuples; //从文件流中读入数据 for(int i=0; i>tuple[j]; } tuples.push_back(tuple); } cout<


这段代码也是很容易理解的了:
1.先在所有向量中随机取K个向量作为初始质心,并给一个初始误差。
2.然后遍历所有向量,那个向量离那个质心(k个)近,就把这个向量归于到那个质心
3.接着计算误差。(其实就是每个类内部的每个向量到各自所属类质心的的距离的和,然后把K个类的都算出来,全加起来得到那个var)
4.用得到误差减去上一个误差,如果小于1,就说明质心到个各类的真正质心变化不大了,就退出,否则继续往下。
5.然后每个类重新计算质心(程序里就是类里面所有向量对应元素求平均)
6.再次计算误差。
7.根据质心重新归类。
8.回到第4步。


总结:说白了,就是计算各个质心到各自类的距离和,距离和变化大:重新归类重新计算质心,变化小:退出。


Matlab中的使用:
使用方法:
Idx=Kmeans(X,K)
[Idx,C]=Kmeans(X,K)
[Idx,C,sumD]=Kmeans(X,K)
[Idx,C,sumD,D]=Kmeans(X,K)
[…]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…)

各输入输出参数介绍:

X N*P的数据矩阵
K 表示将X划分为几类,为整数
Idx N*1的向量,存储的是每个点的聚类标号
C K*P的矩阵,存储的是K个聚类质心位置
sumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和
D N*K的矩阵,存储的是每个点与所有质心的距离

[…]=Kmeans(…,'Param1',Val1,'Param2',Val2,…)
这其中的参数Param1、Param2等,主要可以设置为如下:

1. ‘Distance’(距离测度)
‘sqEuclidean’ 欧式距离(默认时,采用此距离方式)
‘cityblock’ 绝度误差和,又称:L1
‘cosine’ 针对向量
‘correlation’针对有时序关系的值
‘Hamming’ 只针对二进制数据

2. ‘Start’(初始质心位置选择方法)
‘sample’ 从X中随机选取K个质心点
‘uniform’ 根据X的分布范围均匀的随机生成K个质心
‘cluster’ 初始聚类阶段随机选择10%的X的子样本(此方法初始使用’sample’方法)
matrix 提供一K*P的矩阵,作为初始质心位置集合

3. ‘Replicates’(聚类重复次数)整数

使用案例:

data= https://www.it610.com/article/
5.0 3.5 1.3 0.3 -1
5.5 2.6 4.4 1.2 0
6.7 3.1 5.6 2.4 1
5.0 3.3 1.4 0.2 -1
5.9 3.0 5.1 1.8 1
5.8 2.6 4.0 1.2 0

[Idx,C,sumD,D]=Kmeans(data,3,'dist','sqEuclidean','rep',4)

运行结果:
Idx =
1
2
3
1
3
2

C =
5.00003.40001.35000.2500-1.0000
5.65002.60004.20001.20000
6.30003.05005.35002.10001.0000

sumD =
0.0300
0.1250
0.6300

D =
0.015011.452525.5350
12.09500.06253.5550
29.66505.75250.3150
0.015010.752524.9650
21.43502.39250.3150
10.20500.06254.0850

    推荐阅读