11.1
#11.1
load("C:/exercise/ch11/exercise11_1.RData")
exercise11_1
#采用指数平滑法预测2016年的PPI,并对实际值和预测值绘图进行比较
#PPI的简单指数平滑预测
exercise11_1<-ts(exercise11_1,start=2006)
cpiforecast<-HoltWinters(exercise11_1[,2],beta=FALSE,gamma=FALSE)
cpiforecast
#历史数据的拟合值
cpiforecast$fitted
#绘制观测值和拟合值图
plot(exercise11_1[,2],type='o',xlab="时间",ylab="PPI")
lines(exercise11_1[,1][-1],cpiforecast$fitted[,1],type="o",lty=2,col="blue")
legend(x="topleft",legend=c("观测值","拟合值"),lty=1:2,col=c(1,4))
#获得样本外的预测值(2016年)
library(forecast)
cpiforecast1<-forecast(cpiforecast,h=1)
cpiforecast1
#实际值和预测值(2016年)图
plot(cpiforecast1,type="o",xlab="时间",ylab="PPI",main="")
11.2
#11.2
load("C:/exercise/ch11/exercise11_2.RData")
exercise11_2
#分别采用一元线性回归模型和Holt指数平滑模型预测2011年的原油产量,并绘制残差图对两种方法的预测效果进行比较
model1<-lm(原油产量~年份,data=https://www.it610.com/article/exercise11_2)
summary(model1)
#y^=-571251.54+293.90x1
h<--571251.54+293.90*2011
h#即,一元回归模型预测出2011年原油产量大概为19781.36
#确定模拟参数α和β以及模型系数a和b
exercise11_2<-ts(exercise11_2,start=1990)
grainforecast<-HoltWinters(exercise11_2[,2],gamma=FALSE)
grainforecast
#绘制拟合图
plot(exercise11_2[,2],type="o",xlab="年份",ylab="原油产量")
lines(exercise11_2[,1][c(-1,-2)],grainforecast$fitted[,1],type="o",lty=2,col="blue")
legend(x="topleft",legend=c("观测值","拟合值"),lty=1:2)
#2011年原油产量
library(forecast)
grainforecast1<-forecast(grainforecast,h=1)
grainforecast1
#实际值和预测值图
plot(grainforecast1,type="o",xlab="年份",ylab="原油产量",main="")
#预测值为20309.77
#残差比较
residual1<-grainforecast1$residuals
residual2<-model1$residuals
plot(as.numeric(residual1),ylim=c(-2000,2000),xlab="",ylab="残差",pch=1)
points(residual2,pch=2,col="red")
abline(h=0)
legend(x="topright",legend=c("Holt模型预测的残差","一元线性回归预测的残差"),pch=1:2,col=c("black","red"),cex=0.8)
11.3
#11.3
load("C:/exercise/ch11/exercise11_3.RData")
exercise11_3
#分别采用Holt指数平滑模型和指数模型预测2009年的财政收入,并对实际值和预测值绘图进行比较
#财政收入的Holt指数平滑预测
exercise11_3<-ts(exercise11_3,start=1991)
grainforecast<-HoltWinters(exercise11_3[,2],gamma=FALSE)
grainforecast
#绘制拟合图
plot(exercise11_3[,2],type="o",xlab="年份",ylab="财政收入")
lines(exercise11_3[,1][c(-1,-2)],grainforecast$fitted[,1],type="o",lty=2,col="blue")
legend(x="topleft",legend=c("观测值","拟合值"),lty=1:2)
#2009年财政收入预测
library(forecast)
grainforecast1<-forecast(grainforecast,h=1)
grainforecast1
#71943.02
#实际值和预测值图
plot(grainforecast1,type="o",xlab="年份",ylab="财政收入",main="")
#指数模型预测
#指数曲线拟合
y<-log(exercise11_3[,2])
x<-1:18
fit<-lm(y~x)
fit
exp(7.8486)
#历史数据及2009年财政收入的预测
predata<-exp(predict(fit,data.frame(x=1:19)))
predata
#65345.638
#各年的预测残差
predata<-exp(predict(fit,data.frame(x=1:18)))
predata<-ts(predata,start=1991)
residuals<-exercise11_3[,2]-predata
residuals
#实际值和预测值的比较图
predata<-exp(predict(fit,data.frame(x=1:19)))
plot(1991:2009,predata,type="o",lty=2,col="blue",xlab="年份",ylab="财政收入")
points(exercise11_3[,2],type="o",pch=19)
legend(x="topleft",legend=c("观测值","预测值"),lty=1:2)
abline(v=2008,lty=6,col="gray")
##残差图
plot(1991:2008,residuals,type="o",lty=2,xlab="年份",ylab="residuals")
abline(h=0)
11.4
#10.4
load("C:/exercise/ch11/exercise11_4.RData")
exercise11_4
#分别拟合回归直线,二次曲线,三次曲线,并绘制图形对结果进行比较
#回归直线
fit<-lm(盘价格~时间,data=https://www.it610.com/article/exercise11_4)
summary(fit)
#Y1^=374.16134-0.61373t
#二次曲线
y<-exercise11_4[,2]
t<-1:35
fit1<-lm(y~t+I(t^2))
fit1
#Y2^=381.64416-1.82715t+0.03371t^2
#三次曲线
fit2<-lm(y~t+I(t^2)+I(t^3))
fit2
#Y3^=372.561669+1.002958t-0.160088t^2+0.003589t^3
#图
predata<-predict(fit,data.frame(时间=1:36))#各年的预测值
predata
res<-residuals(fit)#各年的预测残差
res
predata1<-predict(fit1,data.frame(t=1:36))#二次曲线预测值
predata1
residual1<-fit1$residuals#二次曲线预测的残差
residual1
predata2<-predict(fit2,data.frame(t=1:36))#三次曲线预测值
predata2
residual2<-fit2$residuals#三次曲线预测的残差
residual2
#实际值和预测值曲线
predata<-predict(fit,data.frame(时间=1:36))
predata1<-predict(fit1,data.frame(t=1:36))
predata2<-predict(fit2,data.frame(t=1:36))
plot(1:36,predata2,type="o",lty=2,col="red",xlab="时间",ylim=c(340,400),ylab="盘价格")
lines(1:36,predata1,type="o",lty=3,col="green",xlab="时间",ylim=c(340,400),ylab="盘价格")
lines(1:36,predata,type="o",lty=4,col="blue")
points(exercise11_4[,1],exercise11_4[,2],type="o",pch=19)
legend(x="bottom",legend=c("观测值","回归直线","二次曲线","三次曲线"),lty=1:4,col=c("black","blue","green","red"))
abline(v=35,lty=6)
11.5
#11.5
load("C:/exercise/ch11/exercise11_5.RData")
exercise11_5
#分别使用Winter指数平滑模型和分解法预测2014年各月份的社会消费品零售总额,并绘制实际值和预测值图,分析预测效果
#Winter指数平滑模型
#把数据转化成以月份为周期的时间序列格式
exercise11_5<-ts(exercise11_5[,3],start=2009,frequency=12)
exercise11_5
#确定模型参数的α、β和γ以及模型的a,b和s
saleforecast<-HoltWinters(exercise11_5)
saleforecast
#Winter模型的拟合图
plot(exercise11_5,type="o",xlab="时间",ylab="零售总额")
lines(saleforecast$fitted[,1],type="o",lty=2,col="blue")
legend(x="topleft",legend=c("观测值","拟合值"),lty=1:2,col=c(1,4))
#Winter模型2014年的预测
library(forecast)
saleforecast1<-forecast(saleforecast,h=12)
saleforecast1
#Winter模型的预测图
plot(saleforecast1,type="o",xlab="时间",ylab="零售总额",main="")
abline(v=2014,lty=6,col="gray")
#分解预测
#计算月份指数
salecompose<-decompose(exercise11_5,type="multiplicative")
names(salecompose)
salecompose$seasonal
#月份调整后的序列图
seasonaladjust<-exercise11_5/salecompose$seasonal
plot(exercise11_5,xlab="时间",ylab="零售总额",type="o",pch=19)
lines(seasonaladjust,lty=2,type="o",col="blue")
legend(x="topleft",legend=c("零售总额","零售总额的月份调整"),lty=1:2)
#月份调整后序列的线性模型
x<-1:60
fit<-lm(seasonaladjust~x)
fit
#最终预测值
predata<-predict(fit,data.frame(x=1:72))*rep(salecompose$seasonal[1:12],6)
predata<-ts(predata,start=2009,frequency=12)
predata
#预测的残差
residuals1<-exercise11_5-predict(fit,data.frame(x=1:60))*salecompose$seasonal
residuals1<-ts(residuals1,start=2009,frequency=12)
round(residuals1,4)
#实际值和预测值的比较图
predata<-predict(fit,data.frame(x=1:72))*rep(salecompose$seasonal[1:12],6)
predata<-ts(predata,start=2009,frequency=12)
plot(predata,type="o",lty=2,col="blue",xlab="时间",ylab="零售总额")
lines(exercise11_5)
legend(x="topleft",legend=c("实际零售总额","预测零售总额"),lty=1:2,col=c("black","blue"),cex=0.7)
abline(v=2014,lty=6,col="grey")
#分解预测与Winter模型预测残差的比较
residuals1<-exercise11_5-predict(fit,data.frame(x=1:60))*salecompose$seasonal
saleforecast<-HoltWinters(exercise11_5)
residuals2<-exercise11_5[-(1:12)]-saleforecast$fitted[,1]
par(cex=0.7,mai=c(0.4,0.7,0.1,0.1))
plot(as.numeric(residuals1),xlab="",ylab="残差",ylim=c(-800,800),pch=1)
abline(h=0)
points(as.numeric(residuals2),pch=2,col="red")
abline(h=0)
legend(x="topright",legend=c("分解预测的残差","Winter模型预测的残差"),pch=1:2,col=1:2,cex=0.8)
【r语言|统计学--基于R(第3版)(基于R应用的统计学丛书)作者(贾俊平 习题答案 第十一章)】11.6
#11.6
#利用11.4的数据,分别采用m=5和m=10对收盘价格进行平滑,并绘制出实际值与平滑值的图形进行比较
load("C:/exercise/ch11/exercise11_4.RData")
exercise11_4
exercise11_4<-ts(exercise11_4,start=1)
library(DescTools)
ma5<-MoveAvg(exercise11_4[,2],order=5,align="center",endrule="keep")
ma10<-MoveAvg(exercise11_4[,2],order=10,align="center",endrule="NA")
y1<-exercise11_4[,1]
y2<-exercise11_4[,2]
data.frame("时间"=y1,"盘价格"=y2,ma5,ma10)
#绘制实际值和平滑值的比较图形
par(mai=c(0.7,0.7,0.1,0.1),cex=0.8)
plot(exercise11_4[,2],type="o",xlab="时间",ylab="盘价格")
lines(ma5,type="o",lty=2,col="red")
lines(ma10,type="o",lty=2,col="blue")
legend(x="topleft",legend=c("盘价格","ma5","ma10"),lty=c(1,2,6),col=c("black","red","blue"),cex=0.8)
推荐阅读
- r语言|统计学--基于R(第3版)(基于R应用的统计学丛书)作者(贾俊平 习题答案 第十章)
- 计算机专业毕业设计题目|大数据毕业设计题目50例
- 数据挖掘|知乎高赞(有哪些你看了以后大呼过瘾的数据分析书())
- 漫画趣解大数据算法建模(买瓜)
- 大数据在linux下分析当红歌手歌词风格
- 可曾听闻大话二字—统计学R语言
- 人工智能|MIT 曝光 M1 不可修复的漏洞,网友(时间挺巧,是时候换 M2 了!)
- 客快物流大数据项目(Docker的迁移与备份)
- 大数据|权威发布|恭喜 Apache Doris PPMC 陈明雨入选 2021 中国开源先锋 33 人之心尖上的开源人物...