8 种最坑的SQL错误用法,你有没有踩过()

sql语句的执行顺序:

FROM ON JOIN WHERE GROUP BY HAVINGSELECTDISTINCTORDER BY LIMIT

1、LIMIT 语句
分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。
SELECT * FROMoperation WHEREtype = 'SQLStats' AND name = 'SlowLog' ORDERBY create_time LIMIT1000, 10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?
要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。
在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:
SELECT* FROMoperation WHEREtype = 'SQLStats' ANDname = 'SlowLog' ANDcreate_time > '2017-03-16 14:00:00' ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。
2、隐式转换
SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:
mysql> explain extended SELECT * > FROMmy_balance b > WHEREb.bpn = 14000000123 >AND b.isverified IS NULL ; mysql> show warnings; | Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。
上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。
3、关联更新、删除
虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。
比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。
UPDATE operation o SETstatus = 'applying' WHEREo.id IN (SELECT id FROM(SELECT o.id, o.status FROMoperation o WHEREo.group = 123 AND o.status NOT IN ( 'done' ) ORDERBY o.parent, o.id LIMIT1) t);

执行计划:
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | id | select_type| table | type| possible_keys | key| key_len | ref| rows | Extra| +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | 1| PRIMARY| o| index || PRIMARY | 8|| 24| Using where; Using temporary| | 2| DEPENDENT SUBQUERY |||||||| Impossible WHERE noticed after reading const tables | | 3| DERIVED| o| ref| idx_2,idx_5| idx_5| 8| const | 1| Using where; Using filesort| +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。
UPDATE operation o JOIN(SELECT o.id, o.status FROMoperation o WHEREo.group = 123 AND o.status NOT IN ( 'done' ) ORDERBY o.parent, o.id LIMIT1) t ON o.id = t.id SETstatus = 'applying'

执行计划简化为:
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key| key_len | ref| rows | Extra| +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | 1| PRIMARY|||||||| Impossible WHERE noticed after reading const tables | | 2| DERIVED| o| ref| idx_2,idx_5| idx_5 | 8| const | 1| Using where; Using filesort| +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4、混合排序
MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。
SELECT * FROMmy_order o INNER JOIN my_appraise a ON a.orderid = o.id ORDERBY a.is_reply ASC, a.appraise_time DESC LIMIT0, 20

执行计划显示为全表扫描:
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | id | select_type | table | type| possible_keys| key| key_len | ref| rows| Extra +----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ |1 | SIMPLE| a| ALL| idx_orderid | NULL| NULL| NULL| 1967647 | Using filesort | |1 | SIMPLE| o| eq_ref | PRIMARY| PRIMARY | 122| a.orderid |1 | NULL| +----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。
SELECT * FROM((SELECT * FROMmy_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 0 ORDERBY appraise_time DESC LIMIT0, 20) UNION ALL (SELECT * FROMmy_order o INNER JOIN my_appraise a ON a.orderid = o.id AND is_reply = 1 ORDERBY appraise_time DESC LIMIT0, 20)) t ORDERBYis_reply ASC, appraisetime DESC LIMIT20;

5、EXISTS语句
MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:SELECT * FROMmy_neighbor n LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHEREn.topic_status < 4 AND EXISTS(SELECT 1 FROMmessage_info m WHEREn.id = m.neighbor_id AND m.inuser = 'xxx') AND n.topic_type <> 5

执行计划为:
+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+ | id | select_type| table | type | possible_keys| key| key_len | ref| rows| Extra| +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ |1 | PRIMARY| n| ALL|| NULL| NULL| NULL| 1086041 | Using where| |1 | PRIMARY| sra| ref|| idx_user_id | 123| const |1 | Using where| |2 | DEPENDENT SUBQUERY | m| ref|| idx_message_info| 122| const |1 | Using index condition; Using where | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。
SELECT * FROMmy_neighbor n INNER JOIN message_info m ON n.id = m.neighbor_id AND m.inuser = 'xxx' LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id AND sra.user_id = 'xxx' WHEREn.topic_status < 4 AND n.topic_type <> 5

新的执行计划:
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | id | select_type | table | type| possible_keys| key| key_len | ref| rows | Extra| +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ |1 | SIMPLE| m| ref| | idx_message_info| 122| const|1 | Using index condition | |1 | SIMPLE| n| eq_ref | | PRIMARY| 122| ighbor_id |1 | Using where| |1 | SIMPLE| sra| ref| | idx_user_id | 123| const|1 | Using where| +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6、条件下推
外部查询条件不能够下推到复杂的视图或子查询的情况有:
1、聚合子查询;2、含有 LIMIT 的子查询;3、UNION 或 UNION ALL 子查询;4、输出字段中的子查询;
如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:
SELECT * FROM(SELECT target, Count(*) FROMoperation GROUPBY target) t WHEREtarget = 'rm-xxxx' +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | id | select_type | table| type| possible_keys | key| key_len | ref| rows | Extra| +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ |1 | PRIMARY| | ref||| 514| const |2 | Using where | |2 | DERIVED| operation| index | idx_4| idx_4| 519| NULL|20 | Using index | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:
SELECT target, Count(*) FROMoperation WHEREtarget = 'rm-xxxx' GROUPBY target

执行计划变为:
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于 MySQL 外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表 http://mysql.taobao.org/month...
7、提前缩小范围
先上初始 SQL 语句:
SELECT * FROMmy_order o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid WHERE( o.display = 0 ) AND ( o.ostaus = 1 ) ORDERBY o.selltime DESC LIMIT0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | id | select_type | table | type| possible_keys | key| key_len | ref| rows| Extra| +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ |1 | SIMPLE| o| ALL| NULL| NULL| NULL| NULL| 909119 | Using where; Using temporary; Using filesort| |1 | SIMPLE| u| eq_ref | PRIMARY| PRIMARY | 4| o.uid |1 | NULL| |1 | SIMPLE| p| ALL| PRIMARY| NULL| NULL| NULL|6 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。
SELECT * FROM ( SELECT * FROMmy_order o WHERE( o.display = 0 ) AND ( o.ostaus = 1 ) ORDERBY o.selltime DESC LIMIT0, 15 ) o LEFT JOIN my_userinfo u ON o.uid = u.uid LEFT JOIN my_productinfo p ON o.pid = p.pid ORDER BYo.selltime DESC limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | id | select_type | table| type| possible_keys | key| key_len | ref| rows| Extra| +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ |1 | PRIMARY| | ALL| NULL| NULL| NULL| NULL|15 | Using temporary; Using filesort| |1 | PRIMARY| u| eq_ref | PRIMARY| PRIMARY | 4| o.uid |1 | NULL| |1 | PRIMARY| p| ALL| PRIMARY| NULL| NULL| NULL|6 | Using where; Using join buffer (Block Nested Loop) | |2 | DERIVED| o| index| NULL| idx_1| 5| NULL| 909112 | Using where| +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8、中间结果集下推
再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):
SELECTa.*, c.allocated FROM( SELECTresourceid FROMmy_distribute d WHEREisdelete = 0 ANDcusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECTresourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROMmy_resources GROUP BY resourcesid) c ONa.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。
其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。
SELECTa.*, c.allocated FROM( SELECTresourceid FROMmy_distribute d WHEREisdelete = 0 ANDcusmanagercode = '1234567' ORDER BY salecode limit 20) a LEFT JOIN ( SELECTresourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROMmy_resources r, ( SELECTresourceid FROMmy_distribute d WHEREisdelete = 0 ANDcusmanagercode = '1234567' ORDER BY salecode limit 20) a WHEREr.resourcesid = a.resourcesid GROUP BY resourcesid) c ONa.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:
WITH a AS ( SELECTresourceid FROMmy_distribute d WHEREisdelete = 0 ANDcusmanagercode = '1234567' ORDER BY salecode limit 20) SELECTa.*, c.allocated FROMa LEFT JOIN ( SELECTresourcesid, sum(ifnull(allocation, 0) * 12345) allocated FROMmy_resources r, a WHEREr.resourcesid = a.resourcesid GROUP BY resourcesid) c ONa.resourceid = c.resourcesid

总结
数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。
上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。
程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。
编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。
【8 种最坑的SQL错误用法,你有没有踩过()】来源:yq.aliyun.com/articles/72501

    推荐阅读