python对RabbitMQ的简单入门使用教程
目录
- (一)RabbitMQ的简介
- (二)RabbitMQ的安装
- (三)python操作RabbitMQ
- (四)RabbitMQ简单模式
- (五)RabbitMQ发布订阅模式
- (六)RabbitMQ RPC模式
- (七)说点啥
- (八)结语
(一)RabbitMQ的简介 RabbitMq 是实现了高级消息队列协议(AMQP)的开源消息代理中间件。消息队列是一种应用程序对应用程序的通行方式,应用程序通过写消息,将消息传递于队列,由另一应用程序读取 完成通信。而作为中间件的 RabbitMq 无疑是目前最流行的消息队列之一。目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ。
RabbitMQ总体架构
文章图片
PS:生产者和消费者可能在不同的程序或主机中,当然也有可能一个程序有可能既是生产者,也是消费者。
RabbitMq 应用场景广泛:
1.系统的高可用:日常生活当中各种商城秒杀,高流量,高并发的场景。当服务器接收到如此大量请求处理业务时,有宕机的风险。某些业务可能极其复杂,但这部分不是高时效性,不需要立即反馈给用户,我们可以将这部分处理请求抛给队列,让程序后置去处理,减轻服务器在高并发场景下的压力。
【python对RabbitMQ的简单入门使用教程】2.分布式系统,集成系统,子系统之间的对接,以及架构设计中常常需要考虑消息队列的应用。
(二)RabbitMQ的安装
apt-get updateapt-get install erlangapt-get install rabbitmq-server#启动rabbitmq: service rabbitmq-server start#停止rabbitmq: service rabbitmq-server stop#重启rabbitmq: service rabbitmq-server restart#启动rabbitmq插件:rabbitmq-plugins enable rabbitmq_management
启用rabbitmq_management插件后就可以登录后台管理页面了,浏览器输入ip:15672
文章图片
自带的密码和用户名都是guest,但是只能本机登录
所以下面我们添加新用户,和自定义权限
#添加新用户rabbitmqctl add_user 用户名 密码#给指定用户添加管理员权限rabbitmqctl set_user_tags 用户名 administrator给用户添加权限rabbitmqctl set_permissions -p / 用户名 ".*" ".*" ".*"
在web页面输入用户名,和密码
文章图片
(三)python操作RabbitMQ python中使用pika操作RabbitMQ
pip install pika#皮卡皮卡,哈哈
(四)RabbitMQ简单模式
文章图片
上代码
# coding=utf-8### 生产者import pikaimport timeuser_info = pika.PlainCredentials('root', 'root')#用户名和密码connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))#连接服务器上的RabbitMQ服务# 创建一个channelchannel = connection.channel()# 如果指定的queue不存在,则会创建一个queue,如果已经存在 则不会做其他动作,官方推荐,每次使用时都可以加上这句channel.queue_declare(queue='hello')for i in range(0, 100):channel.basic_publish(exchange='',#当前是一个简单模式,所以这里设置为空字符串就可以了routing_key='hello',# 指定消息要发送到哪个queuebody='{}'.format(i)# 指定要发送的消息)time.sleep(1)# 关闭连接# connection.close()
PS:RabbitMQ中所有的消息都要先通过交换机,空字符串表示使用默认的交换机
# coding=utf-8### 消费者import pikauser_info = pika.PlainCredentials('root', 'root')connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))channel = connection.channel()# 如果指定的queue不存在,则会创建一个queue,如果已经存在 则不会做其他动作,生产者和消费者都做这一步的好处是# 这样生产者和消费者就没有必要的先后启动顺序了channel.queue_declare(queue='hello')# 回调函数def callback(ch, method, properties, body):print('消费者收到:{}'.format(body))# channel: 包含channel的一切属性和方法# method: 包含 consumer_tag, delivery_tag, exchange, redelivered, routing_key# properties: basic_publish 通过 properties 传入的参数# body: basic_publish发送的消息channel.basic_consume(queue='hello',# 接收指定queue的消息auto_ack=True,# 指定为True,表示消息接收到后自动给消息发送方回复确认,已收到消息on_message_callback=callback# 设置收到消息的回调函数)print('Waiting for messages. To exit press CTRL+C')# 一直处于等待接收消息的状态,如果没收到消息就一直处于阻塞状态,收到消息就调用上面的回调函数channel.start_consuming()
文章图片
对于上面的这种模式,有一下两个不好的地方:
一个是在我们的消费者还没开始消费完队列里的消息,如果这时rabbitmq服务挂了,那么消息队列里的消息将会全部丢失,解决方法是在声明队列时,声明队列为可持久化存储队列,并且在生产者在将消息插入到消息队列时,设置消息持久化存储,具体如下
# coding=utf-8### 生产者import pikaimport timeuser_info = pika.PlainCredentials('root', 'root')connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))# 创建一个channelchannel = connection.channel()# 如果指定的queue不存在,则会创建一个queue,如果已经存在 则不会做其他动作,官方推荐,每次使用时都可以加上这句channel.queue_declare(queue='durable_queue',durable=True)#PS:这里不同种队列不允许名字相同for i in range(0, 100):channel.basic_publish(exchange='',routing_key='durable_queue',body='{}'.format(i),properties=pika.BasicProperties(delivery_mode=2))# 关闭连接# connection.close()
消费者与上面的消费者没有什么不同,具体的就是消费声明的队列,也要是可持久化的队列,还有就是,即使在生产者插入消息时,设置当前消息持久化存储(properties=pika.BasicProperties(delivery_mode=2)),并不能百分百保证消息真的被持久化,因为RabbitMQ挂掉的时候它可能还保存在缓存中,没来得及同步到磁盘中
在生产者插入消息后,立刻停止rabbitmq,并重新启动,其实我们在web管理页面也可看到未被消费的信息,当然在启动消费者后也成功接收到了消息
文章图片
上面说的第二点不好就是,如果在消费者获取到队列里的消息后,在回调函数的处理过程中,消费者突然出错或程序崩溃等异常,那么就会造成这条消息并未被实际正常的处理掉。为了解决这个问题,我们只需在消费者basic_consume(auto_ack=False),并在回调函数中设置手动应答即可ch.basic_ack(delivery_tag=method.delivery_tag),具体如下
# coding=utf-8### 消费者import pikaimport timeuser_info = pika.PlainCredentials('root', 'root')connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))channel = connection.channel()# 如果指定的queue不存在,则会创建一个queue,如果已经存在 则不会做其他动作,生产者和消费者都做这一步的好处是# 这样生产者和消费者就没有必要的先后启动顺序了channel.queue_declare(queue='queue')# 回调函数def callback(ch, method, properties, body):time.sleep(5)ch.basic_ack(delivery_tag=method.delivery_tag)print('消费者收到:{}'.format(body.decode('utf-8')))# channel: 包含channel的一切属性和方法# method: 包含 consumer_tag, delivery_tag, exchange, redelivered, routing_key# properties: basic_publish 通过 properties 传入的参数# body: basic_publish发送的消息channel.basic_consume(queue='queue',# 接收指定queue的消息auto_ack=False,# 指定为False,表示取消自动应答,交由回调函数手动应答on_message_callback=callback# 设置收到消息的回调函数)# 应答的本质是告诉消息队列可以将这条消息销毁了print('Waiting for messages. To exit press CTRL+C')# 一直处于等待接收消息的状态,如果没收到消息就一直处于阻塞状态,收到消息就调用上面的回调函数channel.start_consuming()
这里只需要配置消费者,生产者并不要修改
还有就是在上的使用方式在,都是一个生产者和一个消费者,还有一种情况就是,一个生产者和多个消费者,即多个消费者同时监听一个消息队列,这时候队列里的消息就是轮询分发(即如果消息队列里有100条信息,如果有2个消费者,那么每个就会收到50条信息),但是在某些情况下,不同的消费者处理任务的能力是不同的,这时还按照轮询的方式分发消息并不是很合理,那么只需要再配合手动应答的方式,设置消费者接收的消息没有处理完,队列就不要给我放送新的消息即可,具体配置方式如下:
# coding=utf-8### 消费者import pikaimport timeuser_info = pika.PlainCredentials('root', 'root')connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))channel = connection.channel()# 如果指定的queue不存在,则会创建一个queue,如果已经存在 则不会做其他动作,生产者和消费者都做这一步的好处是# 这样生产者和消费者就没有必要的先后启动顺序了channel.queue_declare(queue='queue')# 回调函数def callback(ch, method, properties, body):time.sleep(0)#通过设置休眠时间来模拟不同消费者的处理时间ch.basic_ack(delivery_tag=method.delivery_tag)print('消费者收到:{}'.format(body.decode('utf-8')))# prefetch_count表示接收的消息数量,当我接收的消息没有处理完(用basic_ack标记消息已处理完毕)之前不会再接收新的消息了channel.basic_qos(prefetch_count=1)# 还有就是这个设置必须在basic_consume之上,否则不生效channel.basic_consume(queue='queue',# 接收指定queue的消息auto_ack=False,# 指定为False,表示取消自动应答,交由回调函数手动应答on_message_callback=callback# 设置收到消息的回调函数)# 应答的本质是告诉消息队列可以将这条消息销毁了print('Waiting for messages. To exit press CTRL+C')# 一直处于等待接收消息的状态,如果没收到消息就一直处于阻塞状态,收到消息就调用上面的回调函数channel.start_consuming()
PS:这种情况必须关闭自动应答ack,改成手动应答。使用basicQos(perfetch=1)限制每次只发送不超过1条消息到同一个消费者,消费者必须手动反馈告知队列,才会发送下一个
(五)RabbitMQ发布订阅模式 发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中
文章图片
这个模式中会引入交换机的概念,其实在RabbitMQ中,所有的生产者都不会直接把消息发送到队列中,甚至生产者都不知道消息在发出后有没有发送到queue中,事实上,生产者只能将消息发送给交换机,由交换机来决定发送到哪个队列中。
交换机的一端用来从生产者中接收消息,另一端用来发送消息到队列,交换机的类型规定了怎么处理接收到的消息,发布订阅模式使用到的交换机类型为 fanout ,这种交换机类型非常简单,就是将接收到的消息广播给已知的(即绑定到此交换机的)所有消费者。
当然,如果不想使用特定的交换机,可以使用 exchange=’’ 表示使用默认的交换机,默认的交换机会将消息发送到 routing_key 指定的queue,可以参考简单模式。
上代码:
#生产者import pikauser_info = pika.PlainCredentials('root', 'root')connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))channel = connection.channel()# 创建一个指定名称的交换机,并指定类型为fanout,用于将接收到的消息广播到所有queue中channel.exchange_declare(exchange='交换机', exchange_type='fanout')# 将消息发送给指定的交换机,在fanout类型中,routing_key=''表示不用发送到指定queue中,# 而是将发送到绑定到此交换机的所有queuechannel.basic_publish(exchange='交换机', routing_key='', body='这是一条测试消息')
#消费者import pikauser_info = pika.PlainCredentials('root', 'root')connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))channel = connection.channel()channel.exchange_declare(exchange='交换机', exchange_type='fanout')# 使用RabbitMQ给自己生成一个专有的queueresult = channel.queue_declare(queue='333')# result = channel.queue_declare(queue='', exclusive=True)queue_name = result.method.queue# 这里如果设置exclusive=True参数,那么该队列就是一个只有队列,在消费者结束后,该专有队列也会自动清除,如果queue=''没有设置名字的话,那么就会自动生成一个# 不会重复的队列名# 将queue绑定到指定交换机channel.queue_bind(exchange='交换机', queue=queue_name)print(' [*] Waiting formessage.')def callback(ch, method, properties, body):print("消费者收到:{}".format(body.decode('utf-8')))channel.basic_consume(queue=queue_name, on_message_callback=callback, auto_ack=True)channel.start_consuming()
该模式与简单模式的还有一个区别就是,这里的消息队列都是由消费者声明的,所以如果是生产者先启动,并将消息发给交换机的画,这里的消息就会丢失,所以我们也可以在消费者端声明队列并绑定交换机(不能是专有队列),所以仔细想想,其实这所谓的发布订阅模式并没有说什么了不起,它不过是让交换机同时推送多条消息给绑定的队列,我们当然也可以在简单模式的基础上多进行几次basic_publish发送消息到指定的队列。当然我们这样做的话,可能就没办法做到由交换机的同时发送了,效率可能也没有一次basic_publish的高
(六)RabbitMQ RPC模式
文章图片
下面实现由rpc远程调用加减运算
客户端
import pikaimport uuidimport jsonclass RPC(object):def __init__(self):self.call_id = Noneself.response = Noneuser_info = pika.PlainCredentials('root', 'root')self.connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))self.channel = self.connection.channel()# 创建一个此客户端专用的queue,用于接收服务端发过来的消息result = self.channel.queue_declare(queue='', exclusive=True)self.callback_queue = result.method.queueself.channel.basic_consume(queue=self.callback_queue,on_message_callback=self.on_response,auto_ack=True)def on_response(self, ch, method, props, body):# 判断接收到的response是否属于对应requestif self.call_id == props.correlation_id:self.response = json.loads(body.decode('utf-8')).get('result')def call(self, func, param):self.response = Noneself.call_id = str(uuid.uuid4())# 为该消息指定uuid,类似于请求idself.channel.queue_declare(queue='rpc_queue')self.channel.basic_publish(exchange='',routing_key='rpc_queue',# 将消息发送到该queueproperties=pika.BasicProperties(reply_to=self.callback_queue,# 从该queue中取消息correlation_id=self.call_id,# 为此次消息指定uuid),body=json.dumps({'func': func,'param': {'a': param[0], 'b': param[1]}}))self.connection.process_data_events(time_limit=3)# 与start_consuming()相似,可以设置超时参数return self.responserpc = RPC()print("发送消息到消费者,等待返回结果")response = rpc.call(func='del', param=(1, 2))print("收到来自消费者返回的结果:{}".format(response))
服务端
import pikaimport jsonuser_info = pika.PlainCredentials('root', 'root')connection = pika.BlockingConnection(pika.ConnectionParameters('ip', 5672, '/', user_info))channel = connection.channel()# 指定接收消息的queuechannel.queue_declare(queue='rpc_queue')def add_number(a, b):return a + bdef del_num(a, b):return a - bexecute_map = {'add': add_number,'del': del_num}def on_request(ch, method, props, body):body = json.loads(body.decode('utf-8'))func = body.get('func')param = body.get('param')result = execute_map.get(func)(param.get('a'), param.get('b'))print('进行{}运算,并将结果返回个消费者'.format(func))ch.basic_publish(exchange='',# 使用默认交换机routing_key=props.reply_to,# response发送到该queueproperties=pika.BasicProperties(correlation_id=props.correlation_id),# 使用correlation_id让此response与请求消息对应起来body=json.dumps({'result': result}))ch.basic_ack(delivery_tag=method.delivery_tag)channel.basic_qos(prefetch_count=1)# 从rpc_queue中取消息,然后使用on_request进行处理channel.basic_consume(queue='rpc_queue', on_message_callback=on_request)print(" [x] Awaiting RPC requests")channel.start_consuming()
(七)说点啥 对于rabbitmq的模式还有Routing模式和Topics模式等,这里就不复述了,其实pika对于RabbitMQ的使用还有很多细节和参数值得深究。这篇博客也就是简单的记录下我对pika操作raabbitmq过程和简单的理解
参考链接:
https://www.cnblogs.com/guyuyun/p/14970592.html
https://blog.csdn.net/wohu1104/category_9023593.html
(八)结语 到此这篇关于python对RabbitMQ的简单入门使用的文章就介绍到这了,更多相关python RabbitMQ使用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
推荐阅读
- SpringBoot+RabbitMQ|SpringBoot+RabbitMQ 实现死信队列的示例
- docker安装RabbitMQ及安装延迟插件的详细过程
- python|python+selenium常用语法操作
- 面向对象编程|深入理解面向过程与面向对象的思想差异与各自特色
- 对“运动”的追问
- 你认为的残羹别人也许是盛宴
- Win10系统提示“已禁用对该状态进行检测的服务”如何处理
- 不是吧(30秒|不是吧?30秒 就能学会一个python小技巧?!)
- 干货|干货 | 用python3+dlib教你的程序察言观色
- 妈妈,我爱你