Android|Android Handler的运行机制

Handler的运行机制 Handler的作用:
当我们需要在子线程处理耗时的操作(例如访问网络,数据库的操作),而当耗时的操作完成后,需要更新UI,这就需要使用Handler来处理,因为子线程不能做更新UI的操作。Handler能帮我们很容易的把任务(在子线程处理)切换回它所在的线程。简单理解,Handler就是解决线程和线程之间的通信的。
Handler的使用
使用的handler的两种形式:
1.在主线程使用handler;
2.在子线程使用handler。
在主线程使用handler的示例:

public class TestHandlerActivity extends AppCompatActivity {private static final String TAG = "TestHandlerActivity"; private Handler mHandler = new Handler(){ @Override public void handleMessage(Message msg) { super.handleMessage(msg); //获得刚才发送的Message对象,然后在这里进行UI操作 Log.e(TAG,"------------> msg.what = " + msg.what); } }; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_handler_test); initData(); }private void initData() {//开启一个线程模拟处理耗时的操作 new Thread(new Runnable() { @Override public void run() {SystemClock.sleep(2000); //通过Handler发送一个消息切换回主线程(mHandler所在的线程) mHandler.sendEmptyMessage(0); } }).start(); }

Android|Android Handler的运行机制
文章图片
这里写图片描述 在主线程使用handler很简单,只需在主线程创建一个handler对象,在子线程通过在主线程创建的handler对象发送Message,在handleMessage()方法中接受这个Message对象进行处理。通过handler很容易的从子线程切换回主线程了。
那么来看看在子线程中使用是否也是如此。
public class TestHandlerActivity extends AppCompatActivity {private static final String TAG = "TestHandlerActivity"; //主线程中的handler private Handler mHandler = new Handler(){ @Override public void handleMessage(Message msg) { super.handleMessage(msg); //获得刚才发送的Message对象,然后在这里进行UI操作 Log.e(TAG,"------------> msg.what = " + msg.what); } }; //子线程中的handler private Handler mHandlerThread = null; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_handler_test); initData(); }private void initData() {//开启一个线程模拟处理耗时的操作 new Thread(new Runnable() { @Override public void run() {SystemClock.sleep(2000); //通过Handler发送一个消息切换回主线程(mHandler所在的线程) mHandler.sendEmptyMessage(0); //在子线程中创建Handler mHandlerThread = new Handler(){ @Override public void handleMessage(Message msg) { super.handleMessage(msg); Log.e("sub thread","---------> msg.what = " + msg.what); } }; mHandlerThread.sendEmptyMessage(1); } }).start(); }

Android|Android Handler的运行机制
文章图片
这里写图片描述 程序崩溃了。报的错误是没有在子线程调用Looper.prepare()的方法。而为什么在主线程中使用不会报错?通过源码的分析可以解析这个问题。
在子线程中正确的使用Handler应该是这样的。
public class TestHandlerActivity extends AppCompatActivity {private static final String TAG = "TestHandlerActivity"; //主线程的Handler private Handler mHandler = new Handler(){ @Override public void handleMessage(Message msg) { super.handleMessage(msg); //获得刚才发送的Message对象,然后在这里进行UI操作 Log.e(TAG,"------------> msg.what = " + msg.what); } }; //子线程中的Handler private Handler mHandlerThread = null; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_handler_test); initData(); }private void initData() {//开启一个线程模拟处理耗时的操作 new Thread(new Runnable() { @Override public void run() {SystemClock.sleep(2000); //通过Handler发送一个消息切换回主线程(mHandler所在的线程) mHandler.sendEmptyMessage(0); //调用Looper.prepare()方法 Looper.prepare(); mHandlerThread = new Handler(){ @Override public void handleMessage(Message msg) { super.handleMessage(msg); Log.e("sub thread","---------> msg.what = " + msg.what); } }; mHandlerThread.sendEmptyMessage(1); //调用Looper.loop()方法 Looper.loop(); } }).start(); }

Android|Android Handler的运行机制
文章图片
这里写图片描述 可以看到,通过调用Looper.prepare()运行正常,handleMessage方法中就可以接收到发送的Message。
至于为什么要调用这个方法呢?去看看源码。
Handler的源码分析
Handler的消息处理主要有五个部分组成,Message,Handler,Message Queue,Looper和ThreadLocal。首先简要的了解这些对象的概念
Message:Message是在线程之间传递的消息,它可以在内部携带少量的数据,用于线程之间交换数据。Message有四个常用的字段,what字段,arg1字段,arg2字段,obj字段。what,arg1,arg2可以携带整型数据,obj可以携带object对象。
Handler:它主要用于发送和处理消息的发送消息一般使用sendMessage()方法,还有其他的一系列sendXXX的方法,但最终都是调用了sendMessageAtTime方法,除了sendMessageAtFrontOfQueue()这个方法
而发出的消息经过一系列的辗转处理后,最终会传递到Handler的handleMessage方法中。
Message Queue:MessageQueue是消息队列的意思,它主要用于存放所有通过Handler发送的消息,这部分的消息会一直存在于消息队列中,等待被处理。每个线程中只会有一个MessageQueue对象。
Looper:每个线程通过Handler发送的消息都保存在,MessageQueue中,Looper通过调用loop()的方法,就会进入到一个无限循环当中,然后每当发现Message Queue中存在一条消息,就会将它取出,并传递到Handler的handleMessage()方法中。每个线程中只会有一个Looper对象。
ThreadLocal:MessageQueue对象,和Looper对象在每个线程中都只会有一个对象,怎么能保证它只有一个对象,就通过ThreadLocal来保存。Thread Local是一个线程内部的数据存储类,通过它可以在指定线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储到数据,对于其他线程来说则无法获取到数据。
了解了这些基本概念后,我们深入源码来了解Handler的工作机制。
MessageQueue的工作原理
MessageQueue消息队列是通过一个单链表的数据结构来维护消息列表的。下面主要看enqueueMessage方法和next()方法。如下:
boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); }synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); return false; }msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue.Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (; ; ) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; }// We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }

可以看出,在这个方法里主要是根据时间的顺序向单链表中插入一条消息。
next()方法。如下
Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) { return null; }int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (; ; ) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); }nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message.Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier.Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready.Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; }// Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; }// If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run.Loop and wait some more. mBlocked = true; continue; }if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); }// Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handlerboolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf(TAG, "IdleHandler threw exception", t); }if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } }// Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }

在next方法是一个无限循环的方法,如果有消息返回这条消息并从链表中移除,而没有消息则一直阻塞在这里。
Looper的工作原理
每个程序都有一个入口,而Android程序是基于java的,java的程序入口是静态的main函数,因此Android程序的入口也应该为静态的main函数,在android程序中这个静态的main在ActivityThread类中。我们来看一下这个main方法,如下:
public static void main(String[] args) { SamplingProfilerIntegration.start(); // CloseGuard defaults to true and can be quite spammy.We // disable it here, but selectively enable it later (via // StrictMode) on debug builds, but using DropBox, not logs. CloseGuard.setEnabled(false); Environment.initForCurrentUser(); // Set the reporter for event logging in libcore EventLogger.setReporter(new EventLoggingReporter()); Security.addProvider(new AndroidKeyStoreProvider()); // Make sure TrustedCertificateStore looks in the right place for CA certificates final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId()); TrustedCertificateStore.setDefaultUserDirectory(configDir); Process.setArgV0("
"); //###### Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); }if (false) { Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread")); }Looper.loop(); throw new RuntimeException("Main thread loop unexpectedly exited"); }

在main方法中系统调用了 Looper.prepareMainLooper(); 来创建主线程的Looper以及MessageQueue,并通过Looper.loop()来开启主线程的消息循环。来看看Looper.prepareMainLooper()是怎么创建出这两个对象的。如下:
public static void prepareMainLooper() { prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { throw new IllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } }

可以看到,在这个方法中调用了 prepare(false); 方法和 myLooper(); 方法,我在进入这个两个方法中,如下:
private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }

在这里可以看出,sThreadLocal对象保存了一个Looper对象,首先判断是否已经存在Looper对象了,以防止被调用两次。sThreadLocal对象是ThreadLocal类型,因此保证了每个线程中只有一个Looper对象。Looper对象是什么创建的,我们进入看看,如下:
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }

可以看出,这里在Looper构造函数中创建出了一个MessageQueue对象和保存了当前线程。从上面可以看出一个线程中只有一个Looper对象,而Message Queue对象是在Looper构造函数创建出来的,因此每一个线程也只会有一个MessageQueue对象。
对prepare方法还有一个重载的方法:如下
public static void prepare() { prepare(true); }

prepare()仅仅是对prepare(boolean quitAllowed) 的封装而已,在这里就很好解释了在主线程为什么不用调用Looper.prepare()方法了。因为在主线程启动的时候系统已经帮我们自动调用了Looper.prepare()方法。
在Looper.prepareMainLooper()方法中还调用了一个方法myLooper(),我们进去看看,如下:
/** * Return the Looper object associated with the current thread.Returns * null if the calling thread is not associated with a Looper. */ public static Looper myLooper() { return sThreadLocal.get(); }

在调用prepare()方法中在当前线程保存一个Looper对象sThreadLocal.set(new Looper(quitAllowed)); my Looper()方法就是取出当前线程的Looper对象,保存在sMainLooper引用中。
在main()方法中还调用了Looper.loop()方法,如下:
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (; ; ) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; }// This must be in a local variable, in case a UI event sets the logger Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); }msg.target.dispatchMessage(msg); if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); }// Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); }msg.recycle(); } }

在这个方法里,进入一个无限循环,不断的从MessageQueue的next方法获取消息,而next方法是一个阻塞操作,当没有消息的时候一直在阻塞,当有消息通过 msg.target.dispatchMessage(msg); 这里的msg.target其实就是发送给这条消息的Handler对象。
Handler的运行机制
看看Handler的构造方法。如下:
public Handler(Callback callback) { this(callback, false); }public Handler(Looper looper) { this(looper, null, false); }public Handler(Looper looper, Callback callback) { this(looper, callback, false); }

我们去看看没有Looper 对象的构造方法:
public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } }mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }

可以看到,到looper对象为null,抛出 "Can't create handler inside thread that has not called Looper.prepare()"异常由这里可以知道,当我们在子线程使用Handler的时候要手动调用Looper.prepare()创建一个Looper对象,之所以主线程不用,是系统启动的时候帮我们自动调用了Looper.prepare()方法。
handler的工作主要包含发送和接收过程。消息的发送主要通过post和send的一系列方法,而post的一系列方法是最终是通过send的一系列方法来实现的。而send的一系列方法最终是通过sendMessageAtTime方法来实现的,除了sendMessageAtFrontOfQueue()这个方法。去看看这些一系列send的方法,如下:
public final boolean sendMessage(Message msg) { return sendMessageDelayed(msg, 0); }public final boolean sendEmptyMessage(int what) { return sendEmptyMessageDelayed(what, 0); }public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) { Message msg = Message.obtain(); msg.what = what; return sendMessageAtTime(msg, uptimeMillis); }public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); }public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }public final boolean sendMessageAtFrontOfQueue(Message msg) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, 0); }private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }

可以看出,handler发送一条消息其实就是在消息队列插入一条消息。在Looper的loop方法中,从Message Queue中取出消息调msg.target.dispatchMessage(msg); 这里其实就是调用了Handler的dispatchMessage(msg)方法,进去看看,如下:
/** * Handle system messages here. */ public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }

判断msg.callback是否为空,不为空调用 handleCallback(msg); 来处理消息。其实callback是一个Runnable对象,就是Handler发送post消息传过来的对象。
public final boolean post(Runnable r) { returnsendMessageDelayed(getPostMessage(r), 0); }public final boolean postAtTime(Runnable r, long uptimeMillis) { return sendMessageAtTime(getPostMessage(r), uptimeMillis); }public final boolean postAtTime(Runnable r, Object token, long uptimeMillis) { return sendMessageAtTime(getPostMessage(r, token), uptimeMillis); }public final boolean postDelayed(Runnable r, long delayMillis) { return sendMessageDelayed(getPostMessage(r), delayMillis); }public final boolean postAtFrontOfQueue(Runnable r) { return sendMessageAtFrontOfQueue(getPostMessage(r)); }private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; }

进去handleCallback方法看看怎么处理消息的,如下:
private static void handleCallback(Message message) { message.callback.run(); }

可以看出,其实就是回调Runnable对象的run方法。Activity的runOnUiThread,View的postDelayed方法也是同样的原理,我们先看看runOnUiThread方法,如下:
public final void runOnUiThread(Runnable action) { if (Thread.currentThread() != mUiThread) { mHandler.post(action); } else { action.run(); } }

View的postDelayed方法。如下:
public boolean postDelayed(Runnable action, long delayMillis) { final AttachInfo attachInfo = mAttachInfo; if (attachInfo != null) { return attachInfo.mHandler.postDelayed(action, delayMillis); } // Assume that post will succeed later ViewRootImpl.getRunQueue().postDelayed(action, delayMillis); return true; }

实质上都是在UI线程中执行了Runnable的run方法。
如果msg.callback是否为null,判断mCallback是否为null?mCallback是一个接口,如下:
/** * Callback interface you can use when instantiating a Handler to avoid * having to implement your own subclass of Handler. * * @param msg A {@link android.os.Message Message} object * @return True if no further handling is desired */ public interface Callback { public boolean handleMessage(Message msg); }

CallBack其实提供了另一种使用Handler的方式,可以派生子类重写handleMessage()方法,也可以通过设置CallBack来实现。
我们梳理一下我们在主线程使用Handler的过程。
首先在主线程创建一个Handler对象 ,并重写handleMessage()方法。然后当在子线程中需要进行更新UI的操作,我们就创建一个Message对象,并通过handler发送这条消息出去。之后这条消息被加入到MessageQueue队列中等待被处理,通过Looper对象会一直尝试从Message Queue中取出待处理的消息,最后分发会Handler的handler Message()方法中。
Android|Android Handler的运行机制
文章图片
这里写图片描述 【Android|Android Handler的运行机制】END.

    推荐阅读