#|26_Pytorch多分类,Softmax多分类实战,利用神经网络进行分类

此文为学习博文整理出
11.21.Pytorch多分类问题
1.21.1.PyTorch:Softmax多分类实战
1.21.1.1.MNIST数据集
1.21.1.2.Softmax分类
1.21.1.3.PyTorch实战
1.21.2.利用神经网络进行分类
1.21.Pytorch多分类问题 1.21.1.PyTorch:Softmax多分类实战
多分类一种比较常用的做法是在最后一层加softmax归一化,值最大的维度所对应的位置则作为该样本对应的类。本文采用PyTorch框架,选用经典图像数据集mnist学习一波多分类。
1.21.1.1.MNIST数据集 MNIST 数据集(手写数字数据集)来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。MNIST数据集下载地址:http://yann.lecun.com/exdb/mnist/。手写数字的MNIST数据库包括60,000个的训练集样本,以及10,000个测试集样本。
#|26_Pytorch多分类,Softmax多分类实战,利用神经网络进行分类
文章图片

其中:
train-images-idx3-ubyte.gz (训练数据集图片)
train-labels-idx1-ubyte.gz (训练数据集标记类别)
t10k-images-idx3-ubyte.gz: (测试数据集)
t10k-labels-idx1-ubyte.gz(测试数据集标记类别)
#|26_Pytorch多分类,Softmax多分类实战,利用神经网络进行分类
文章图片

MNIST数据集是经典图像数据集,包括10个类别(0到9)。每一张图片拉成向量表示,如下图784维向量作为第一层输入特征。
#|26_Pytorch多分类,Softmax多分类实战,利用神经网络进行分类
文章图片

1.21.1.2.Softmax分类 softmax函数的本质就是将一个K 维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间,并且压缩后的K个值相加等于1(变成了概率分布)。在选用Softmax做多分类时,可以根据值的大小来进行多分类的任务,如取权重最大的一维。softmax介绍和公式网上很多,这里不介绍了。下面使用Pytorch定义一个多层网络(4个隐藏层,最后一层softmax概率归一化),输出层为10正好对应10类。
#|26_Pytorch多分类,Softmax多分类实战,利用神经网络进行分类
文章图片

1.21.1.3.PyTorch实战

# -*- coding: UTF-8 -*-import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable# Training settings batch_size = 64# MNIST Dataset train_dataset = datasets.MNIST(root='./mnist_data/', train=True, transform=transforms.ToTensor(), download=True)test_dataset = datasets.MNIST(root='./mnist_data/', train=False, transform=transforms.ToTensor())# Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = nn.Linear(784, 520) self.l2 = nn.Linear(520, 320) self.l3 = nn.Linear(320, 240) self.l4 = nn.Linear(240, 120) self.l5 = nn.Linear(120, 10)def forward(self, x): # Flatten the data (n, 1, 28, 28) --> (n, 784) x = x.view(-1, 784) x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) x = F.relu(self.l3(x)) x = F.relu(self.l4(x)) return F.log_softmax(self.l5(x), dim=1) #return self.l5(x)model = Net()optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)def train(epoch): # 每次输入barch_idx个数据 for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data), Variable(target)optimizer.zero_grad() output = model(data) # loss loss = F.nll_loss(output, target) loss.backward() # update optimizer.step() if batch_idx % 200 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))def test(): test_loss = 0 correct = 0 # 测试集 for data, target in test_loader: data, target = Variable(data, volatile=True), Variable(target) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target).item() # get the index of the max pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum()test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset) ))for epoch in range(1, 6): train(epoch) test()

输出结果:
Python 3.7.4 (default, Aug9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] on win32 Django 3.0.6 runfile('E:/workspace/pytorch-learn/26_多分类问题/01_多分类问题.py', wdir='E:/workspace/pytorch-learn/26_多分类问题') Train Epoch: 1 [0/60000 (0%)] Loss: 2.299828 Train Epoch: 1 [12800/60000 (21%)] Loss: 2.296097 Train Epoch: 1 [25600/60000 (43%)] Loss: 2.286291 Train Epoch: 1 [38400/60000 (64%)] Loss: 2.258982 Train Epoch: 1 [51200/60000 (85%)] Loss: 2.001041 E:/workspace/pytorch-learn/26_多分类问题/01_多分类问题.py:81: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead. data, target = Variable(data, volatile=True), Variable(target) Test set: Average loss: 0.0223, Accuracy: 5924/10000 (59%) Train Epoch: 2 [0/60000 (0%)] Loss: 1.392825 Train Epoch: 2 [12800/60000 (21%)] Loss: 0.917865 Train Epoch: 2 [25600/60000 (43%)] Loss: 0.554404 Train Epoch: 2 [38400/60000 (64%)] Loss: 0.556347 Train Epoch: 2 [51200/60000 (85%)] Loss: 0.422638 Test set: Average loss: 0.0065, Accuracy: 8784/10000 (88%) Train Epoch: 3 [0/60000 (0%)] Loss: 0.348750 Train Epoch: 3 [12800/60000 (21%)] Loss: 0.396100 Train Epoch: 3 [25600/60000 (43%)] Loss: 0.404045 Train Epoch: 3 [38400/60000 (64%)] Loss: 0.275161 Train Epoch: 3 [51200/60000 (85%)] Loss: 0.526218 Test set: Average loss: 0.0052, Accuracy: 8978/10000 (90%) Train Epoch: 4 [0/60000 (0%)] Loss: 0.422416 Train Epoch: 4 [12800/60000 (21%)] Loss: 0.269215 Train Epoch: 4 [25600/60000 (43%)] Loss: 0.182410 Train Epoch: 4 [38400/60000 (64%)] Loss: 0.150055 Train Epoch: 4 [51200/60000 (85%)] Loss: 0.224126 Test set: Average loss: 0.0036, Accuracy: 9333/10000 (93%) Train Epoch: 5 [0/60000 (0%)] Loss: 0.149385 Train Epoch: 5 [12800/60000 (21%)] Loss: 0.271054 Train Epoch: 5 [25600/60000 (43%)] Loss: 0.340432 Train Epoch: 5 [38400/60000 (64%)] Loss: 0.311231 Train Epoch: 5 [51200/60000 (85%)] Loss: 0.127134 Test set: Average loss: 0.0026, Accuracy: 9511/10000 (95%)

1.21.2.利用神经网络进行分类
本文就是用最简单的途径来看看神经网络是怎么进行事物的分类。具体的实现如下:
# -*- coding: UTF-8 -*-import torch import torch.nn.functional as F import matplotlib as plt from torch.autograd import Variable#创建一些假数据 n_data = https://www.it610.com/article/torch.ones(100, 2)# 数据的基本形态 x0 = torch.normal(2*n_data, 1)# 类型0 x data (tensor), shape=(100, 2) y0 = torch.zeros(100)# 类型0 y data (tensor), shape=(100, 1) x1 = torch.normal(-2*n_data, 1)# 类型1 x data (tensor), shape=(100, 1) y1 = torch.ones(100)# 类型1 y data (tensor), shape=(100, 1)# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据) x = torch.cat((x0, x1), 0).type(torch.FloatTensor)# FloatTensor = 32-bit floating y = torch.cat((y0, y1), ).type(torch.LongTensor)# LongTensor = 64-bit integer# torch只能在Variable上训练,所以把它们变成Variable x, y = Variable(x), Variable(y)# 建立一个神经网络我们可以直接运用torch中的体系,先定义所有的层属性(init()),然后再一层层搭建(forward(x)) # 层与层的关系链接。这个和我们在前面的regression的时候的神经网络基本没差。建立关系的时候,我们会用到激活函数。# 建立神经网络 class Net(torch.nn.Module):# 继承torch的Module def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__()#继承__init__功能 self.hidden = torch.nn.Linear(n_feature, n_hidden)# 隐藏层线性输出 self.out = torch.nn.Linear(n_hidden, n_output)# 输出层线性输出def forward(self, x): # 正向传播输入值,神经网络分析输出值 x = F.relu(self.hidden(x))# 激活函数(隐藏层的线性值) x = self.out(x)# 输出值, 但是这个不是预测值, 预测值还需要再另外计算 return xnet = Net(n_feature=2, n_hidden=10, n_output=2)# 几个类别就几个 output print(net) # 训练网络 # optimizer是训练的工具 optimizer = torch.optim.SGD(net.parameters(), lr=0.02)#传入net的所有参数,学习率 # 算误差的时候, 注意真实值!不是! one-hot 形式的, 而是1D Tensor, (batch,) # 但是预测值是2D tensor (batch, n_classes) loss_func = torch.nn.CrossEntropyLoss()for t in range(200): out = net(x)# 喂给 net 训练数据 x, 输出分析值loss = loss_func(out, y)# 计算两者的误差 print(loss)optimizer.zero_grad()# 清空上一步的残余更新参数值 loss.backward()# 误差反向传播, 计算参数更新值 optimizer.step()# 将参数更新值施加到 net 的 parameters上

【#|26_Pytorch多分类,Softmax多分类实战,利用神经网络进行分类】输出结果:
runfile('E:/workspace/pytorch-learn/26_多分类问题/03_pytorch之区分类型.py', wdir='E:/workspace/pytorch-learn/26_多分类问题') Net( (hidden): Linear(in_features=2, out_features=10, bias=True) (out): Linear(in_features=10, out_features=2, bias=True) ) tensor(1.2678, grad_fn=) tensor(1.1538, grad_fn=) tensor(1.0548, grad_fn=) tensor(0.9684, grad_fn=) tensor(0.8926, grad_fn=) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx tensor(0.2143, grad_fn=) tensor(0.2082, grad_fn=) tensor(0.2023, grad_fn=) tensor(0.1968, grad_fn=)

再如案例
importtorch importtorch.nn as nn importtorch.nn.functional as F importtorch.optim as optim fromtorchvision import datasets, transformsbatch_size=200 learning_rate=0.01 epochs=10train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=True)w1, b1 = torch.randn(200, 784, requires_grad=True),\ torch.zeros(200, requires_grad=True) w2, b2 = torch.randn(200, 200, requires_grad=True),\ torch.zeros(200, requires_grad=True) w3, b3 = torch.randn(10, 200, requires_grad=True),\ torch.zeros(10, requires_grad=True)torch.nn.init.kaiming_normal_(w1) torch.nn.init.kaiming_normal_(w2) torch.nn.init.kaiming_normal_(w3)def forward(x): x = x@w1.t() + b1 x = F.relu(x) x = x@w2.t() + b2 x = F.relu(x) x = x@w3.t() + b3 x = F.relu(x) return xoptimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate) criteon = nn.CrossEntropyLoss()for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader): data = https://www.it610.com/article/data.view(-1, 28*28)logits = forward(data) loss = criteon(logits, target)optimizer.zero_grad() loss.backward() # print(w1.grad.norm(), w2.grad.norm()) optimizer.step()if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))test_loss = 0 correct = 0 for data, target in test_loader: data = https://www.it610.com/article/data.view(-1, 28 * 28) logits = forward(data) test_loss += criteon(logits, target).item()pred = logits.data.max(1)[1] correct += pred.eq(target.data).sum()test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))

    推荐阅读