Arduino|Arduino框架下合宙ESP32C3 +1.8“TFT液晶屏通过TFT_eSPI库驱动显示

Arduino框架下合宙ESP32C3 +1.8/1.44 寸TFT液晶屏通过TFT_eSPI库驱动显示

  • TFT_eSPI库显示示例效果
库安装后需要进行配置
  • 库安装好后并不能直接通过示例来编译上传到合宙ESP32C3上面,因为,直接不能直接通过编译,引脚需要进行修改。
  • TFT_eSPI安装,可以通过管理库,搜索关键字TFT_eSPI找到,或者通过下面的链接,选择下载最新版本的库让后解压导入到Arduino对应的库目录下。
  • TFT_eSPI库下载:https://www.arduino.cc/reference/en/libraries/tft_espi/
  • 开发板型号选择
Arduino|Arduino框架下合宙ESP32C3 +1.8“TFT液晶屏通过TFT_eSPI库驱动显示
文章图片

修改头文件中的引脚定义
  • 在Arduino IDE库文件位置,找到安装好的TFT_eSPI库文件夹:C:\Users\Administrator\Documents\Arduino\libraries\TFT_eSPI
    • 找到User_Setup.h
      Arduino|Arduino框架下合宙ESP32C3 +1.8“TFT液晶屏通过TFT_eSPI库驱动显示
      文章图片
【Arduino|Arduino框架下合宙ESP32C3 +1.8“TFT液晶屏通过TFT_eSPI库驱动显示】参照下面的修改,嫌麻烦的,直接复制粘贴全覆盖。
//USER DEFINED SETTINGS //Set driver type, fonts to be loaded, pins used and SPI control method etc // //See the User_Setup_Select.h file if you wish to be able to define multiple //setups and then easily select which setup file is used by the compiler. // //If this file is edited correctly then all the library example sketches should //run without the need to make any more changes for a particular hardware setup! //Note that some sketches are designed for a particular TFT pixel width/height// User defined information reported by "Read_User_Setup" test & diagnostics example #define USER_SETUP_INFO "User_Setup"// Define to disable all #warnings in library (can be put in User_Setup_Select.h) //#define DISABLE_ALL_LIBRARY_WARNINGS// ################################################################################## // // Section 1. Call up the right driver file and any options for it // // ##################################################################################// Define STM32 to invoke optimised processor support (only for STM32) //#define STM32// Defining the STM32 board allows the library to optimise the performance // for UNO compatible "MCUfriend" style shields //#define NUCLEO_64_TFT //#define NUCLEO_144_TFT// STM32 8 bit parallel only: // If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7 // then this will improve rendering performance by a factor of ~8x //#define STM_PORTA_DATA_BUS //#define STM_PORTB_DATA_BUS// Tell the library to use parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT //#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor ****// Display type -only define if RPi display //#define RPI_DISPLAY_TYPE // 20MHz maximum SPI// Only define one driver, the other ones must be commented out //#define ILI9341_DRIVER// Generic driver for common displays //#define ILI9341_2_DRIVER// Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172 #define ST7735_DRIVER// Define additional parameters below for this display //#define ILI9163_DRIVER// Define additional parameters below for this display //#define S6D02A1_DRIVER //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI //#define HX8357D_DRIVER //#define ILI9481_DRIVER //#define ILI9486_DRIVER //#define ILI9488_DRIVER// WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high) //#define ST7789_DRIVER// Full configuration option, define additional parameters below for this display //#define ST7789_2_DRIVER// Minimal configuration option, define additional parameters below for this display //#define R61581_DRIVER //#define RM68140_DRIVER //#define ST7796_DRIVER //#define SSD1351_DRIVER //#define SSD1963_480_DRIVER //#define SSD1963_800_DRIVER //#define SSD1963_800ALT_DRIVER //#define ILI9225_DRIVER //#define GC9A01_DRIVER// Some displays support SPI reads via the MISO pin, other displays have a single // bi-directional SDA pin and the library will try to read this via the MOSI line. // To use the SDA line for reading data from the TFT uncomment the following line:// #define TFT_SDA_READ// This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display // Try ONE option at a time to find the correct colour order for your display//#define TFT_RGB_ORDER TFT_RGB// Colour order Red-Green-Blue //#define TFT_RGB_ORDER TFT_BGR// Colour order Blue-Green-Red// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below// #define M5STACK// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation // #define TFT_WIDTH80 #define TFT_WIDTH128 // #define TFT_WIDTH172 // ST7789 172 x 320 // #define TFT_WIDTH240 // ST7789 240 x 240 and 240 x 320 #define TFT_HEIGHT 160 // #define TFT_HEIGHT 128 // #define TFT_HEIGHT 240 // ST7789 240 x 240 // #define TFT_HEIGHT 320 // ST7789 240 x 320 // #define TFT_HEIGHT 240 // GC9A01 240 x 240// For ST7735 ONLY, define the type of display, originally this was based on the // colour of the tab on the screen protector film but this is not always true, so try // out the different options below if the screen does not display graphics correctly, // e.g. colours wrong, mirror images, or stray pixels at the edges. // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this // this User_Setup file, then rebuild and upload the sketch to the board again:// #define ST7735_INITB // #define ST7735_GREENTAB // #define ST7735_GREENTAB2 // #define ST7735_GREENTAB3 // #define ST7735_GREENTAB128// For 128 x 128 display // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset) // #define ST7735_REDTAB // #define ST7735_BLACKTAB // #define ST7735_REDTAB160x80// For 160 x 80 display with 24 pixel offset// If colours are inverted (white shows as black) then uncomment one of the next // 2 lines try both options, one of the options should correct the inversion.// #define TFT_INVERSION_ON // #define TFT_INVERSION_OFF// ################################################################################## // // Section 2. Define the pins that are used to interface with the display here // // ##################################################################################// If a backlight control signal is available then define the TFT_BL pin in Section 2 // below. The backlight will be turned ON when tft.begin() is called, but the library // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be // driven with a PWM signal or turned OFF/ON then this must be handled by the user // sketch. e.g. with digitalWrite(TFT_BL, LOW); // #define TFT_BL32// LED back-light control pin // #define TFT_BACKLIGHT_ON HIGH// Level to turn ON back-light (HIGH or LOW)// We must use hardware SPI, a minimum of 3 GPIO pins is needed. // Typical setup for ESP8266 NodeMCU ESP-12 is : // // Display SDO/MISOto NodeMCU pin D6 (or leave disconnected if not reading TFT) // Display LEDto NodeMCU pin VIN (or 5V, see below) // Display SCKto NodeMCU pin D5 // Display SDI/MOSIto NodeMCU pin D7 // Display DC (RS/AO)to NodeMCU pin D3 // Display RESETto NodeMCU pin D4 (or RST, see below) // Display CSto NodeMCU pin D8 (or GND, see below) // Display GNDto NodeMCU pin GND (0V) // Display VCCto NodeMCU 5V or 3.3V // // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin // // The DC (Data Command) pin may be labelled AO or RS (Register Select) // // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected. // // The NodeMCU D0 pin can be used for RST // // // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin // If 5V is not available at a pin you can use 3.3V but backlight brightness // will be lower.// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation //#define TFT_CSPIN_D8// Chip select control pin D8 //#define TFT_DCPIN_D3// Data Command control pin //#define TFT_RSTPIN_D4// Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST-1// Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V//#define TFT_BL PIN_D1// LED back-light (only for ST7789 with backlight control pin)//#define TOUCH_CS PIN_D2// Chip select pin (T_CS) of touch screen//#define TFT_WR PIN_D2// Write strobe for modified Raspberry Pi TFT only// ######FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES######// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact // but saves pins for other functions. It is best not to connect MISO as some displays // do not tristate that line when chip select is high! // Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller // cannot be connected as well to the same SPI signals. // On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode // On NodeMCU V3S0 =MISO, S1 =MOSI, S2 =SCLK // In ESP8266 overlap mode the following must be defined//#define TFT_SPI_OVERLAP// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 //#define TFT_CSPIN_D3 //#define TFT_DCPIN_D5// Data Command control pin //#define TFT_RSTPIN_D4// Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST-1// Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP######// For ESP32 Dev board (only tested with ILI9341 display) // The hardware SPI can be mapped to any pins//#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS15// Chip select control pin //#define TFT_DC2// Data Command control pin //#define TFT_RST4// Reset pin (could connect to RST pin) //#define TFT_RST-1// Set TFT_RST to -1 if display RESET is connected to ESP32 board RST// For ESP32 Dev board (only tested with GC9A01 display) // The hardware SPI can be mapped to any pins#define TFT_MOSI 03 // In some display driver board, it might be written as "SDA" and so on. #define TFT_SCLK 02 #define TFT_CS07// Chip select control pin #define TFT_DC06// Data Command control pin #define TFT_RST10// Reset pin (could connect to Arduino RESET pin) #define TFT_BL11// LED back-light//#define TOUCH_CS 21// Chip select pin (T_CS) of touch screen//#define TFT_WR 22// Write strobe for modified Raspberry Pi TFT only// For the M5Stack module use these #define lines //#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS14// Chip select control pin //#define TFT_DC27// Data Command control pin //#define TFT_RST33// Reset pin (could connect to Arduino RESET pin) //#define TFT_BL32// LED back-light (required for M5Stack)// ######EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP######// The library supports 8 bit parallel TFTs with the ESP32, the pin // selection below is compatible with ESP32 boards in UNO format. // Wemos D32 boards need to be modified, see diagram in Tools folder. // Only ILI9481 and ILI9341 based displays have been tested!// Parallel bus is only supported for the STM32 and ESP32 // Example below is for ESP32 Parallel interface with UNO displays// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT// The ESP32 and TFT the pins used for testing are: //#define TFT_CS33// Chip select control pin (library pulls permanently low //#define TFT_DC15// Data Command control pin - must use a pin in the range 0-31 //#define TFT_RST32// Reset pin, toggles on startup//#define TFT_WR4// Write strobe control pin - must use a pin in the range 0-31 //#define TFT_RD2// Read strobe control pin//#define TFT_D012// Must use pins in the range 0-31 for the data bus //#define TFT_D113// so a single register write sets/clears all bits. //#define TFT_D226// Pins can be randomly assigned, this does not affect //#define TFT_D325// TFT screen update performance. //#define TFT_D417 //#define TFT_D516 //#define TFT_D627 //#define TFT_D714// ######EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP######// The TFT can be connected to SPI port 1 or 2 //#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz //#define TFT_MOSI PA7 //#define TFT_MISO PA6 //#define TFT_SCLK PA5//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz //#define TFT_MOSI PB15 //#define TFT_MISO PB14 //#define TFT_SCLK PB13// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select //#define TFT_CSD5 // Chip select control pin to TFT CS //#define TFT_DCD6 // Data Command control pin to TFT DC (may be labelled RS = Register Select) //#define TFT_RSTD7 // Reset pin to TFT RST (or RESET) // OR alternatively, we can use STM32 port reference names PXnn //#define TFT_CSPE11 // Nucleo-F767ZI equivalent of D5 //#define TFT_DCPE9// Nucleo-F767ZI equivalent of D6 //#define TFT_RSTPF13 // Nucleo-F767ZI equivalent of D7//#define TFT_RST-1// Set TFT_RST to -1 if the display RESET is connected to processor reset // Use an Arduino pin for initial testing as connecting to processor reset // may not work (pulse too short at power up?)// ################################################################################## // // Section 3. Define the fonts that are to be used here // // ##################################################################################// Comment out the #defines below with // to stop that font being loaded // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not // normally necessary. If all fonts are loaded the extra FLASH space required is // about 17Kbytes. To save FLASH space only enable the fonts you need!#define LOAD_GLCD// Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH #define LOAD_FONT2// Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters #define LOAD_FONT4// Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters #define LOAD_FONT6// Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm #define LOAD_FONT7// Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-. #define LOAD_FONT8// Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-. //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT #define LOAD_GFXFF// FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded // this will save ~20kbytes of FLASH #define SMOOTH_FONT// ################################################################################## // // Section 4. Other options // // ##################################################################################// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface. //#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface// For the RP2040 processor define the SPI port channel used (default 0 if undefined) //#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used// For the STM32 processor define the SPI port channel used (default 1 if undefined) //#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2// Define the SPI clock frequency, this affects the graphics rendering speed. Too // fast and the TFT driver will not keep up and display corruption appears. // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails // With a ST7735 display more than 27MHz may not work (spurious pixels and lines) // With an ILI9163 display 27 MHz works OK.// #define SPI_FREQUENCY1000000 // #define SPI_FREQUENCY5000000 // #define SPI_FREQUENCY10000000 // #define SPI_FREQUENCY20000000 #define SPI_FREQUENCY27000000 // #define SPI_FREQUENCY40000000 // #define SPI_FREQUENCY55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz) // #define SPI_FREQUENCY80000000// Optional reduced SPI frequency for reading TFT #define SPI_READ_FREQUENCY20000000// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: #define SPI_TOUCH_FREQUENCY2500000// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) // then uncomment the following line: //#define USE_HSPI_PORT// Comment out the following #define if "SPI Transactions" do not need to be // supported. When commented out the code size will be smaller and sketches will // run slightly faster, so leave it commented out unless you need it!// Transaction support is needed to work with SD library but not needed with TFT_SdFat // Transaction support is required if other SPI devices are connected.// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex) // so changing it here has no effect// #define SUPPORT_TRANSACTIONS

  • 修改完成后,就可以尝试编译TFT_eSPI库对应的示例程序跑跑看了。
示例程序
  • TFT_eSPI\examples\160 x 128\Arduino_Life示例
//The Game of Life, also known simply as Life, is a cellular automaton //devised by the British mathematician John Horton Conway in 1970. // https://en.wikipedia.org/wiki/Conway's_Game_of_Life// See license at end of file.// Adapted by Bodmer //#define CONFIG_IDF_TARGET_ESP32C3 #include //点击这里会自动打开管理库页面: http://librarymanager/All#TFT_eSPI #include //#include "User_Setup.h"TFT_eSPI tft = TFT_eSPI(); // Invoke custom library// Maximum number of generations until the screen is refreshed #define MAX_GEN_COUNT 500// The ESP8266 has plenty of memory so we can create a large array // 2 x 2 pixel cells, array size = 5120 bytes per array, runs fast #define GRIDX 80 #define GRIDY 64 #define CELLXY 2// 1 x 1 pixel cells, array size = 20480 bytes per array //#define GRIDX 160 //#define GRIDY 128 //#define CELLXY 1#define GEN_DELAY 10 // Set a delay between each generation to slow things down//Current grid and newgrid arrays are needed uint8_t grid[GRIDX][GRIDY]; //The new grid for the next generation uint8_t newgrid[GRIDX][GRIDY]; //Number of generations uint16_t genCount = 0; void setup(){//Set up the display tft.init(); tft.setRotation(3); tft.fillScreen(TFT_BLACK); tft.setTextSize(1); tft.setTextColor(TFT_WHITE); tft.setCursor(0, 0); }void loop() {//Display a simple splash screen tft.fillScreen(TFT_BLACK); tft.setTextSize(2); tft.setTextColor(TFT_WHITE); tft.setCursor(40, 5); tft.println(F("Arduino")); tft.setCursor(35, 25); tft.println(F("Cellular")); tft.setCursor(35, 45); tft.println(F("Automata")); delay(1000); tft.fillScreen(TFT_BLACK); initGrid(); genCount = MAX_GEN_COUNT; drawGrid(); //Compute generations for (int gen = 0; gen < genCount; gen++) { computeCA(); drawGrid(); delay(GEN_DELAY); for (int16_t x = 1; x < GRIDX-1; x++) { for (int16_t y = 1; y < GRIDY-1; y++) { grid[x][y] = newgrid[x][y]; } }} }//Draws the grid on the display void drawGrid(void) {uint16_t color = TFT_WHITE; for (int16_t x = 1; x < GRIDX - 1; x++) { for (int16_t y = 1; y < GRIDY - 1; y++) { if ((grid[x][y]) != (newgrid[x][y])) { if (newgrid[x][y] == 1) color = 0xFFFF; //random(0xFFFF); else color = 0; tft.fillRect(CELLXY * x, CELLXY * y, CELLXY, CELLXY, color); } } } }//Initialise Grid void initGrid(void) { for (int16_t x = 0; x < GRIDX; x++) { for (int16_t y = 0; y < GRIDY; y++) { newgrid[x][y] = 0; if (x == 0 || x == GRIDX - 1 || y == 0 || y == GRIDY - 1) { grid[x][y] = 0; } else { if (random(3) == 1) grid[x][y] = 1; else grid[x][y] = 0; }} } }//Compute the CA. Basically everything related to CA starts here void computeCA() { for (int16_t x = 1; x < GRIDX; x++) { for (int16_t y = 1; y < GRIDY; y++) { int neighbors = getNumberOfNeighbors(x, y); if (grid[x][y] == 1 && (neighbors == 2 || neighbors == 3 )) { newgrid[x][y] = 1; } else if (grid[x][y] == 1)newgrid[x][y] = 0; if (grid[x][y] == 0 && (neighbors == 3)) { newgrid[x][y] = 1; } else if (grid[x][y] == 0) newgrid[x][y] = 0; } } }// Check the Moore neighborhood int getNumberOfNeighbors(int x, int y) { return grid[x - 1][y] + grid[x - 1][y - 1] + grid[x][y - 1] + grid[x + 1][y - 1] + grid[x + 1][y] + grid[x + 1][y + 1] + grid[x][y + 1] + grid[x - 1][y + 1]; }

  • 选择ESP32C3编译信息如下:
使用 2.4.72版本的库 TFT_eSPI 在文件夹: C:\Users\Administrator\Documents\Arduino\libraries\TFT_eSPI 使用 2.0.0版本的库 SPI 在文件夹: C:\Users\Administrator\AppData\Local\Arduino15\packages\esp32\hardware\esp32\1.0.6\libraries\SPI 使用 2.0.0版本的库 FS 在文件夹: C:\Users\Administrator\AppData\Local\Arduino15\packages\esp32\hardware\esp32\1.0.6\libraries\FS 使用 2.0.0版本的库 SPIFFS 在文件夹: C:\Users\Administrator\AppData\Local\Arduino15\packages\esp32\hardware\esp32\1.0.6\libraries\SPIFFS "C:\\Users\\Administrator\\AppData\\Local\\Arduino15\\packages\\esp32\\hardware\\esp32\\1.0.6/tools/riscv32-esp-elf/bin/riscv32-esp-elf-size" -A "d:\\arduino\\MyHexDir/Arduino_Life.ino.elf" 项目使用了 263834 字节,占用了 (20%) 程序存储空间。最大为 1310720 字节。 全局变量使用了20804字节,(6%)的动态内存,余留306876字节局部变量。最大为327680字节。

  • TFT_eSPI库下,128X160可以跑一下示例:
    Arduino|Arduino框架下合宙ESP32C3 +1.8“TFT液晶屏通过TFT_eSPI库驱动显示
    文章图片

    推荐阅读