拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)

全文链接:http://tecdat.cn/?p=18770 原文出处:拓端数据部落公众号 【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例 拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例
【拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)】,时长06:05
为了用R来处理网络数据,我们使用婚礼数据集。

> nflo=network(flo,directed=FALSE)> plot(nflo, displaylabels = TRUE,+ boxed.labels =+ FALSE)

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

下一步是igraph。由于我们有邻接矩阵,因此可以使用它
graph\_from\_adjacency_matrix(flo,+ mode = "undirected")

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

我们可以在两个特定节点之间获得最短路径。我们给节点赋予适当的颜色
all\_shortest\_paths(iflo, ) > plot(iflo)

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

我们还可以可视化边,需要从输出中提取边缘
> lins=c(paste(as.character(L)\[1:4\],+ "--" + as.character(L)\[2:5\]sep="" ,+ paste(as.character(L) 2:5\],+ "--", > E(ifl )$color=c("grey","black")\[1+EU\]> plot(iflo)

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

也可以使用D3js可视化
> library( networkD3 )> simpleNetwork (df)

下一个问题是向网络添加一个顶点。最简单的方法是通过邻接矩阵实现概率
> flo2\["f","v"\]=1> flo2\["v","f"\]=1

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

然后,我们进行集中度测量。
拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

目的是了解它们之间的关系。
betweenness(ilo) > cor(base)betw close deg eigbetw 1.0000000 0.5763487 0.8333763 0.6737162close 0.5763487 1.0000000 0.7572778 0.7989789deg 0.8333763 0.7572778 1.0000000 0.9404647eig 0.6737162 0.7989789 0.9404647 1.0000000

可以使用层次聚类图来可视化集中度度量
hclust(dist( ase,+ method="ward")

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

查看集中度度量的值,查看排名
> for(i in 1:4) rbase\[,i\]=rank(base\[,i\])

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

在此,特征向量测度非常接近顶点的度数。
最后,寻找聚类(以防这些家庭之间爆发战争)
> kc <- fastgreedy.community ( iflo )

在这里,我们有3类
拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

拓端tecdat|拓端tecdat|R语言复杂网络分析(聚类(社区检测)和可视化)
文章图片

最受欢迎的见解
1.采用spss-modeler的web复杂网络对所有腧穴进行分析
2.用R语言和python进行社交网络中的社区检测
3.R语言文本挖掘NASA数据网络分析,tf-idf和主题建模
4.在R语言中使用航空公司复杂网络对疫情进行建模
5.python隶属关系图模型 基于模型的网络中密集重叠社区检测
6.使用Python和SAS Viya分析社交网络
7.关联网络分析:已迁离北京外来人口的数据画像
8.情感语义网络:游记数据感知旅游目的地形象
9.用关联规则数据挖掘探索药物配伍中的规律

    推荐阅读