聊聊storm-kafka-client的ProcessingGuarantee

序 本文主要研究一下storm-kafka-client的ProcessingGuarantee
ProcessingGuarantee storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpoutConfig.java

/** * This enum controls when the tuple with the {@link ConsumerRecord} for an offset is marked as processed, * i.e. when the offset can be committed to Kafka. The default value is AT_LEAST_ONCE. * The commit interval is controlled by {@link KafkaSpoutConfig#getOffsetsCommitPeriodMs() }, if the mode commits on an interval. * NO_GUARANTEE may be removed in a later release without warning, we're still evaluating whether it makes sense to keep. */ @InterfaceStability.Unstable public enum ProcessingGuarantee { /** * An offset is ready to commit only after the corresponding tuple has been processed and acked (at least once). If a tuple fails or * times out it will be re-emitted, as controlled by the {@link KafkaSpoutRetryService}. Commits synchronously on the defined * interval. */ AT_LEAST_ONCE, /** * Every offset will be synchronously committed to Kafka right after being polled but before being emitted to the downstream * components of the topology. The commit interval is ignored. This mode guarantees that the offset is processed at most once by * ensuring the spout won't retry tuples that fail or time out after the commit to Kafka has been done */ AT_MOST_ONCE, /** * The polled offsets are ready to commit immediately after being polled. The offsets are committed periodically, i.e. a message may * be processed 0, 1 or more times. This behavior is similar to setting enable.auto.commit=true in the consumer, but allows the * spout to control when commits occur. Commits asynchronously on the defined interval. */ NO_GUARANTEE, }

  • storm-kafka-client与旧版的storm-kafka不同之一就是引入了ProcessingGuarantee,是的整个代码更为清晰
  • ProcessingGuarantee.AT_LEAST_ONCE就是开启ack的版本,它类似kafka client的auto commit,在指定interval定期commit
  • ProcessingGuarantee.AT_MOST_ONCE,它就不管ack了,在polled out消息的时候同步commit(忽略interval配置),因而该消息最多被处理一次
  • ProcessingGuarantee.NO_GUARANTEE,这个也是不管ack的,不过它跟ProcessingGuarantee.AT_LEAST_ONCE类似,是在指定interval定期commit,不同的是它是异步提交
KafkaSpout.open storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
public class KafkaSpout extends BaseRichSpout {//Initial delay for the commit and subscription refresh timers public static final long TIMER_DELAY_MS = 500; // timer == null only if the processing guarantee is at-most-once private transient Timer commitTimer; // Tuples that were successfully acked/emitted. These tuples will be committed periodically when the commit timer expires, // or after a consumer rebalance, or during close/deactivate. Always empty if processing guarantee is none or at-most-once. private transient Map offsetManagers; // Records that have been polled and are queued to be emitted in the nextTuple() call. One record is emitted per nextTuple() private transient Map>> waitingToEmit; //......@Override public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { this.context = context; // Spout internals this.collector = collector; // Offset management firstPollOffsetStrategy = kafkaSpoutConfig.getFirstPollOffsetStrategy(); // Retries management retryService = kafkaSpoutConfig.getRetryService(); tupleListener = kafkaSpoutConfig.getTupleListener(); if (kafkaSpoutConfig.getProcessingGuarantee() != KafkaSpoutConfig.ProcessingGuarantee.AT_MOST_ONCE) { // In at-most-once mode the offsets are committed after every poll, and not periodically as controlled by the timer commitTimer = new Timer(TIMER_DELAY_MS, kafkaSpoutConfig.getOffsetsCommitPeriodMs(), TimeUnit.MILLISECONDS); } refreshSubscriptionTimer = new Timer(TIMER_DELAY_MS, kafkaSpoutConfig.getPartitionRefreshPeriodMs(), TimeUnit.MILLISECONDS); offsetManagers = new HashMap<>(); emitted = new HashSet<>(); waitingToEmit = new HashMap<>(); commitMetadataManager = new CommitMetadataManager(context, kafkaSpoutConfig.getProcessingGuarantee()); tupleListener.open(conf, context); if (canRegisterMetrics()) { registerMetric(); }LOG.info("Kafka Spout opened with the following configuration: {}", kafkaSpoutConfig); }//......}

  • open的时候判断,只要不是ProcessingGuarantee.AT_MOST_ONCE,那么就初始化commitTimer,period值为kafkaSpoutConfig.getPartitionRefreshPeriodMs(),如果没有设置,默认是2000ms
Timer.isExpiredResetOnTrue storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/internal/Timer.java
public class Timer { private final long delay; private final long period; private final TimeUnit timeUnit; private final long periodNanos; private long start; //....../** * Checks if a call to this method occurs later than {@code period} since the timer was initiated or reset. If that is the * case the method returns true, otherwise it returns false. Each time this method returns true, the counter is reset * (re-initiated) and a new cycle will start. * * @return true if the time elapsed since the last call returning true is greater than {@code period}. Returns false * otherwise. */ public boolean isExpiredResetOnTrue() { final boolean expired = Time.nanoTime() - start >= periodNanos; if (expired) { start = Time.nanoTime(); } return expired; } }

  • Timer有一个重要的方法是isExpiredResetOnTrue,用于判断“调度时间”是否到了,这个在nextTuple里头有调用到
KafkaSpout.nextTuple storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
// ======== Next Tuple ======= @Override public void nextTuple() { try { if (refreshSubscriptionTimer.isExpiredResetOnTrue()) { kafkaSpoutConfig.getSubscription().refreshAssignment(); }if (commitTimer != null && commitTimer.isExpiredResetOnTrue()) { if (isAtLeastOnceProcessing()) { commitOffsetsForAckedTuples(kafkaConsumer.assignment()); } else if (kafkaSpoutConfig.getProcessingGuarantee() == ProcessingGuarantee.NO_GUARANTEE) { Map offsetsToCommit = createFetchedOffsetsMetadata(kafkaConsumer.assignment()); kafkaConsumer.commitAsync(offsetsToCommit, null); LOG.debug("Committed offsets {} to Kafka", offsetsToCommit); } }PollablePartitionsInfo pollablePartitionsInfo = getPollablePartitionsInfo(); if (pollablePartitionsInfo.shouldPoll()) { try { setWaitingToEmit(pollKafkaBroker(pollablePartitionsInfo)); } catch (RetriableException e) { LOG.error("Failed to poll from kafka.", e); } }emitIfWaitingNotEmitted(); } catch (InterruptException e) { throwKafkaConsumerInterruptedException(); } }

  • nextTuple先判断要不要刷新subscription,然后就判断commitTimer,判断是否应该提交commit,这里是调用commitTimer.isExpiredResetOnTrue()
  • ProcessingGuarantee类型如果是NO_GUARANTEE,则调用createFetchedOffsetsMetadata创建待提交的offset及partition信息,然后调用kafkaConsumer.commitAsync进行异步提交;
  • ProcessingGuarantee类型如果是AT_LEAST_ONCE,则调用commitOffsetsForAckedTuples进行提交
  • 处理完offset提交之后,通过getPollablePartitionsInfo获取PollablePartitionsInfo,如果shouldPoll则调用pollKafkaBroker拉数据,然后通过setWaitingToEmit方法将拉取的数据放入waitingToEmit
  • 最后调用emitIfWaitingNotEmitted方法,当有数据的时候就进行emit或者retry,没有数据时通过while循环进行waiting
createFetchedOffsetsMetadata
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
private Map createFetchedOffsetsMetadata(Set assignedPartitions) { Map offsetsToCommit = new HashMap<>(); for (TopicPartition tp : assignedPartitions) { offsetsToCommit.put(tp, new OffsetAndMetadata(kafkaConsumer.position(tp), commitMetadataManager.getCommitMetadata())); } return offsetsToCommit; }

  • 这里根据kafkaConsumer.assignment()的信息,通过kafkaConsumer.position(tp)提取下一步将要fetch的offset位置,通过commitMetadataManager.getCommitMetadata()提取CommitMetadata的json串作为元信息
commitOffsetsForAckedTuples
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
private void commitOffsetsForAckedTuples(Set assignedPartitions) { // Find offsets that are ready to be committed for every assigned topic partition final Map assignedOffsetManagers = new HashMap<>(); for (Entry entry : offsetManagers.entrySet()) { if (assignedPartitions.contains(entry.getKey())) { assignedOffsetManagers.put(entry.getKey(), entry.getValue()); } }final Map nextCommitOffsets = new HashMap<>(); for (Map.Entry tpOffset : assignedOffsetManagers.entrySet()) { final OffsetAndMetadata nextCommitOffset = tpOffset.getValue().findNextCommitOffset(commitMetadataManager.getCommitMetadata()); if (nextCommitOffset != null) { nextCommitOffsets.put(tpOffset.getKey(), nextCommitOffset); } }// Commit offsets that are ready to be committed for every topic partition if (!nextCommitOffsets.isEmpty()) { kafkaConsumer.commitSync(nextCommitOffsets); LOG.debug("Offsets successfully committed to Kafka [{}]", nextCommitOffsets); // Instead of iterating again, it would be possible to commit and update the state for each TopicPartition // in the prior loop, but the multiple network calls should be more expensive than iterating twice over a small loop for (Map.Entry tpOffset : nextCommitOffsets.entrySet()) { //Update the OffsetManager for each committed partition, and update numUncommittedOffsets final TopicPartition tp = tpOffset.getKey(); long position = kafkaConsumer.position(tp); long committedOffset = tpOffset.getValue().offset(); if (position < committedOffset) { /* * The position is behind the committed offset. This can happen in some cases, e.g. if a message failed, lots of (more * than max.poll.records) later messages were acked, and the failed message then gets acked. The consumer may only be * part way through "catching up" to where it was when it went back to retry the failed tuple. Skip the consumer forward * to the committed offset and drop the current waiting to emit list, since it'll likely contain committed offsets. */ LOG.debug("Consumer fell behind committed offset. Catching up. Position was [{}], skipping to [{}]", position, committedOffset); kafkaConsumer.seek(tp, committedOffset); List> waitingToEmitForTp = waitingToEmit.get(tp); if (waitingToEmitForTp != null) { //Discard the pending records that are already committed List> filteredRecords = new ArrayList<>(); for (ConsumerRecord record : waitingToEmitForTp) { if (record.offset() >= committedOffset) { filteredRecords.add(record); } } waitingToEmit.put(tp, filteredRecords); } }final OffsetManager offsetManager = assignedOffsetManagers.get(tp); offsetManager.commit(tpOffset.getValue()); LOG.debug("[{}] uncommitted offsets for partition [{}] after commit", offsetManager.getNumUncommittedOffsets(), tp); } } else { LOG.trace("No offsets to commit. {}", this); } }

  • 这里首先通过offsetManagers,获取已经ack的等待commit的partition以及msgId信息,如果是ProcessingGuarantee.AT_MOST_ONCE则该集合为空
  • 之后根据CommitMetadata通过OffsetManager.findNextCommitOffset获取这一批待commit的消息的offset
  • 然后调用kafkaConsumer.commitSync同步提交offset,之后更新本地的OffsetManager的committed相关信息
getPollablePartitionsInfo
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
private PollablePartitionsInfo getPollablePartitionsInfo() { if (isWaitingToEmit()) { LOG.debug("Not polling. Tuples waiting to be emitted."); return new PollablePartitionsInfo(Collections.emptySet(), Collections.emptyMap()); }Set assignment = kafkaConsumer.assignment(); if (!isAtLeastOnceProcessing()) { return new PollablePartitionsInfo(assignment, Collections.emptyMap()); }Map earliestRetriableOffsets = retryService.earliestRetriableOffsets(); Set pollablePartitions = new HashSet<>(); final int maxUncommittedOffsets = kafkaSpoutConfig.getMaxUncommittedOffsets(); for (TopicPartition tp : assignment) { OffsetManager offsetManager = offsetManagers.get(tp); int numUncommittedOffsets = offsetManager.getNumUncommittedOffsets(); if (numUncommittedOffsets < maxUncommittedOffsets) { //Allow poll if the partition is not at the maxUncommittedOffsets limit pollablePartitions.add(tp); } else { long offsetAtLimit = offsetManager.getNthUncommittedOffsetAfterCommittedOffset(maxUncommittedOffsets); Long earliestRetriableOffset = earliestRetriableOffsets.get(tp); if (earliestRetriableOffset != null && earliestRetriableOffset <= offsetAtLimit) { //Allow poll if there are retriable tuples within the maxUncommittedOffsets limit pollablePartitions.add(tp); } else { LOG.debug("Not polling on partition [{}]. It has [{}] uncommitted offsets, which exceeds the limit of [{}]. ", tp, numUncommittedOffsets, maxUncommittedOffsets); } } } return new PollablePartitionsInfo(pollablePartitions, earliestRetriableOffsets); }

  • 这里对于不是ProcessingGuarantee.AT_LEAST_ONCE类型的,则直接根据kafkaConsumer.assignment()信息返回
  • 如果是ProcessingGuarantee.AT_LEAST_ONCE类型类型的,这里会获取retryService.earliestRetriableOffsets(),把fail相关的offset信息整合进去
  • 这里有一个maxUncommittedOffsets参数,在numUncommittedOffsets
pollKafkaBroker
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
// ======== poll ========= private ConsumerRecords pollKafkaBroker(PollablePartitionsInfo pollablePartitionsInfo) { doSeekRetriableTopicPartitions(pollablePartitionsInfo.pollableEarliestRetriableOffsets); Set pausedPartitions = new HashSet<>(kafkaConsumer.assignment()); Iterator pausedIter = pausedPartitions.iterator(); while (pausedIter.hasNext()) { if (pollablePartitionsInfo.pollablePartitions.contains(pausedIter.next())) { pausedIter.remove(); } } try { kafkaConsumer.pause(pausedPartitions); final ConsumerRecords consumerRecords = kafkaConsumer.poll(kafkaSpoutConfig.getPollTimeoutMs()); ackRetriableOffsetsIfCompactedAway(pollablePartitionsInfo.pollableEarliestRetriableOffsets, consumerRecords); final int numPolledRecords = consumerRecords.count(); LOG.debug("Polled [{}] records from Kafka", numPolledRecords); if (kafkaSpoutConfig.getProcessingGuarantee() == KafkaSpoutConfig.ProcessingGuarantee.AT_MOST_ONCE) { //Commit polled records immediately to ensure delivery is at-most-once. Map offsetsToCommit = createFetchedOffsetsMetadata(kafkaConsumer.assignment()); kafkaConsumer.commitSync(offsetsToCommit); LOG.debug("Committed offsets {} to Kafka", offsetsToCommit); } return consumerRecords; } finally { kafkaConsumer.resume(pausedPartitions); } }private void doSeekRetriableTopicPartitions(Map pollableEarliestRetriableOffsets) { for (Entry retriableTopicPartitionAndOffset : pollableEarliestRetriableOffsets.entrySet()) { //Seek directly to the earliest retriable message for each retriable topic partition kafkaConsumer.seek(retriableTopicPartitionAndOffset.getKey(), retriableTopicPartitionAndOffset.getValue()); } }private void ackRetriableOffsetsIfCompactedAway(Map earliestRetriableOffsets, ConsumerRecords consumerRecords) { for (Entry entry : earliestRetriableOffsets.entrySet()) { TopicPartition tp = entry.getKey(); List> records = consumerRecords.records(tp); if (!records.isEmpty()) { ConsumerRecord record = records.get(0); long seekOffset = entry.getValue(); long earliestReceivedOffset = record.offset(); if (seekOffset < earliestReceivedOffset) { //Since we asked for tuples starting at seekOffset, some retriable records must have been compacted away. //Ack up to the first offset received if the record is not already acked or currently in the topology for (long i = seekOffset; i < earliestReceivedOffset; i++) { KafkaSpoutMessageId msgId = retryService.getMessageId(new ConsumerRecord<>(tp.topic(), tp.partition(), i, null, null)); if (!offsetManagers.get(tp).contains(msgId) && !emitted.contains(msgId)) { LOG.debug("Record at offset [{}] appears to have been compacted away from topic [{}], marking as acked", i, tp); retryService.remove(msgId); emitted.add(msgId); ack(msgId); } } } } } }

  • 如果PollablePartitionsInfo的pollablePartitions不为空,则会调用pollKafkaBroker拉取消息
  • 首先调用了doSeekRetriableTopicPartitions,根据要重试的partition及offset信息,进行seek操作,对每个parition移动到要重试的最早的offset位置
  • 拉取消息的时候,先pause不符合maxUncommitted等条件的paritions,然后进行poll消息,poll拉取消息之后判断如果是ProcessingGuarantee.AT_MOST_ONCE类型的,则调用kafkaConsumer.commitSync同步提交,然后返回拉取的记录(最后设置到waitingToEmit),最后再resume之前pause的partitions(通过这样避免拉取不符合提交条件的partitions的消息);
  • 注意这里的pollablePartitionsInfo是根据getPollablePartitionsInfo()获取的,它是遍历kafkaConsumer.assignment()根据offsetManager及maxUncommittedOffsets等相关参数进行过滤,因此可以认为pollablePartitionsInfo.pollablePartitions是kafkaConsumer.assignment()的子集,而pausedPartitions是根据kafkaConsumer.assignment()过滤掉pollablePartitionsInfo.pollablePartitions得来的,因而pausedPartitions就是getPollablePartitionsInfo()中不满足条件被剔除的partitions,针对这些partitions,先pause再调用poll,最后再resume,也就是此次poll不会从pausedPartitions拉取消息
  • 在poll消息之后还有一个动作就是调用ackRetriableOffsetsIfCompactedAway,针对已经compacted的消息进行ack处理
emitIfWaitingNotEmitted
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
private void emitIfWaitingNotEmitted() { Iterator>> waitingToEmitIter = waitingToEmit.values().iterator(); outerLoop: while (waitingToEmitIter.hasNext()) { List> waitingToEmitForTp = waitingToEmitIter.next(); while (!waitingToEmitForTp.isEmpty()) { final boolean emittedTuple = emitOrRetryTuple(waitingToEmitForTp.remove(0)); if (emittedTuple) { break outerLoop; } } waitingToEmitIter.remove(); } }

  • emitIfWaitingNotEmitted主要是判断waitingToEmit有无数据,有则取出来触发emitOrRetryTuple,没有则不断循环进行waiting
emitOrRetryTuple
storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
/** * Creates a tuple from the kafka record and emits it if it was never emitted or it is ready to be retried. * * @param record to be emitted * @return true if tuple was emitted. False if tuple has been acked or has been emitted and is pending ack or fail */ private boolean emitOrRetryTuple(ConsumerRecord record) { final TopicPartition tp = new TopicPartition(record.topic(), record.partition()); final KafkaSpoutMessageId msgId = retryService.getMessageId(record); if (offsetManagers.containsKey(tp) && offsetManagers.get(tp).contains(msgId)) {// has been acked LOG.trace("Tuple for record [{}] has already been acked. Skipping", record); } else if (emitted.contains(msgId)) {// has been emitted and it is pending ack or fail LOG.trace("Tuple for record [{}] has already been emitted. Skipping", record); } else { final OffsetAndMetadata committedOffset = kafkaConsumer.committed(tp); if (isAtLeastOnceProcessing() && committedOffset != null && committedOffset.offset() > record.offset() && commitMetadataManager.isOffsetCommittedByThisTopology(tp, committedOffset, Collections.unmodifiableMap(offsetManagers))) { // Ensures that after a topology with this id is started, the consumer fetch // position never falls behind the committed offset (STORM-2844) throw new IllegalStateException("Attempting to emit a message that has already been committed." + " This should never occur when using the at-least-once processing guarantee."); }final List tuple = kafkaSpoutConfig.getTranslator().apply(record); if (isEmitTuple(tuple)) { final boolean isScheduled = retryService.isScheduled(msgId); // not scheduled <=> never failed (i.e. never emitted), or scheduled and ready to be retried if (!isScheduled || retryService.isReady(msgId)) { final String stream = tuple instanceof KafkaTuple ? ((KafkaTuple) tuple).getStream() : Utils.DEFAULT_STREAM_ID; if (!isAtLeastOnceProcessing()) { if (kafkaSpoutConfig.isTupleTrackingEnforced()) { collector.emit(stream, tuple, msgId); LOG.trace("Emitted tuple [{}] for record [{}] with msgId [{}]", tuple, record, msgId); } else { collector.emit(stream, tuple); LOG.trace("Emitted tuple [{}] for record [{}]", tuple, record); } } else { emitted.add(msgId); offsetManagers.get(tp).addToEmitMsgs(msgId.offset()); if (isScheduled) {// Was scheduled for retry and re-emitted, so remove from schedule. retryService.remove(msgId); } collector.emit(stream, tuple, msgId); tupleListener.onEmit(tuple, msgId); LOG.trace("Emitted tuple [{}] for record [{}] with msgId [{}]", tuple, record, msgId); } return true; } } else { /*if a null tuple is not configured to be emitted, it should be marked as emitted and acked immediately * to allow its offset to be commited to Kafka*/ LOG.debug("Not emitting null tuple for record [{}] as defined in configuration.", record); if (isAtLeastOnceProcessing()) { msgId.setNullTuple(true); offsetManagers.get(tp).addToEmitMsgs(msgId.offset()); ack(msgId); } } } return false; }
  • emitOrRetryTuple是整个nextTuple的核心,这里包含了emit操作以及retry操作
  • 由于针对fail的消息,是使用seek方法进行重新拉取的,因而这里要使用offsetManagers(已经acked等待commit)以及emitted(已经emit等待ack)进行去重判断,如果这两者都不包含,才进行emit或者retry
  • 进行emit处理时,先通过retryService.isScheduled(msgId)判断是否是失败重试的,如果不是失败重试的,或者是失败重试的且已经到期了,那么就是进行下面的emit处理
  • 针对ProcessingGuarantee.AT_LEAST_ONCE类型的,这里要维护emitted以及offsetManagers,然后进行emit操作,回调tupleListener.onEmit(tuple, msgId)方法;如果不是ProcessingGuarantee.AT_LEAST_ONCE类型的,则仅仅是进行collector.emit操作
KafkaSpout.ack storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
// ======== Ack ======= @Override public void ack(Object messageId) { if (!isAtLeastOnceProcessing()) { return; }// Only need to keep track of acked tuples if commits to Kafka are controlled by // tuple acks, which happens only for at-least-once processing semantics final KafkaSpoutMessageId msgId = (KafkaSpoutMessageId) messageId; if (msgId.isNullTuple()) { //a null tuple should be added to the ack list since by definition is a direct ack offsetManagers.get(msgId.getTopicPartition()).addToAckMsgs(msgId); LOG.debug("Received direct ack for message [{}], associated with null tuple", msgId); tupleListener.onAck(msgId); return; }if (!emitted.contains(msgId)) { LOG.debug("Received ack for message [{}], associated with tuple emitted for a ConsumerRecord that " + "came from a topic-partition that this consumer group instance is no longer tracking " + "due to rebalance/partition reassignment. No action taken.", msgId); } else { Validate.isTrue(!retryService.isScheduled(msgId), "The message id " + msgId + " is queued for retry while being acked." + " This should never occur barring errors in the RetryService implementation or the spout code."); offsetManagers.get(msgId.getTopicPartition()).addToAckMsgs(msgId); emitted.remove(msgId); } tupleListener.onAck(msgId); }

  • ack的时候,如果不是ProcessingGuarantee.AT_LEAST_ONCE类型,就立马返回
  • 之后将已经acked的msgId放入到offsetManagers这个map中,等待在nextTuple中进行commit,然后将其从emitted中移除
  • 这里有一个emitted的去重判断,如果不是之前emit过的就不处理,这种通常是rebalance/partition reassignment引起的
KafkaSpout.fail storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpout.java
// ======== Fail ======= @Override public void fail(Object messageId) { if (!isAtLeastOnceProcessing()) { return; } // Only need to keep track of failed tuples if commits to Kafka are controlled by // tuple acks, which happens only for at-least-once processing semantics final KafkaSpoutMessageId msgId = (KafkaSpoutMessageId) messageId; if (!emitted.contains(msgId)) { LOG.debug("Received fail for tuple this spout is no longer tracking." + " Partitions may have been reassigned. Ignoring message [{}]", msgId); return; } Validate.isTrue(!retryService.isScheduled(msgId), "The message id " + msgId + " is queued for retry while being failed." + " This should never occur barring errors in the RetryService implementation or the spout code."); msgId.incrementNumFails(); if (!retryService.schedule(msgId)) { LOG.debug("Reached maximum number of retries. Message [{}] being marked as acked.", msgId); // this tuple should be removed from emitted only inside the ack() method. This is to ensure // that the OffsetManager for that TopicPartition is updated and allows commit progression tupleListener.onMaxRetryReached(msgId); ack(msgId); } else { tupleListener.onRetry(msgId); emitted.remove(msgId); } }

  • fail的时候也先判断,如果不是ProcessingGuarantee.AT_LEAST_ONCE类型,就立马返回
  • 然后判断emitted中是否存在,如果不存在,则立刻返回,这通常是partition reassigned引起的
  • fail的时候,调用retryService.schedule(msgId),如果不成功,则触发tupleListener.onMaxRetryReached,然后进行ack;如果成功则调用tupleListener.onRetry回调,然后从emitted中删除
KafkaSpoutRetryExponentialBackoff.schedule
【聊聊storm-kafka-client的ProcessingGuarantee】storm-kafka-client-1.2.2-sources.jar!/org/apache/storm/kafka/spout/KafkaSpoutRetryExponentialBackoff.java
private static final RetryEntryTimeStampComparator RETRY_ENTRY_TIME_STAMP_COMPARATOR = new RetryEntryTimeStampComparator(); //This class assumes that there is at most one retry schedule per message id in this set at a time. private final Set retrySchedules = new TreeSet<>(RETRY_ENTRY_TIME_STAMP_COMPARATOR); /** * Comparator ordering by timestamp */ private static class RetryEntryTimeStampComparator implements Serializable, Comparator { @Override public int compare(RetrySchedule entry1, RetrySchedule entry2) { int result = Long.valueOf(entry1.nextRetryTimeNanos()).compareTo(entry2.nextRetryTimeNanos()); if(result == 0) { //TreeSet uses compareTo instead of equals() for the Set contract //Ensure that we can save two retry schedules with the same timestamp result = entry1.hashCode() - entry2.hashCode(); } return result; } }@Override public boolean schedule(KafkaSpoutMessageId msgId) { if (msgId.numFails() > maxRetries) { LOG.debug("Not scheduling [{}] because reached maximum number of retries [{}].", msgId, maxRetries); return false; } else { //Remove existing schedule for the message id remove(msgId); final RetrySchedule retrySchedule = new RetrySchedule(msgId, nextTime(msgId)); retrySchedules.add(retrySchedule); toRetryMsgs.add(msgId); LOG.debug("Scheduled. {}", retrySchedule); LOG.trace("Current state {}", retrySchedules); return true; } }@Override public Map earliestRetriableOffsets() { final Map tpToEarliestRetriableOffset = new HashMap<>(); final long currentTimeNanos = Time.nanoTime(); for (RetrySchedule retrySchedule : retrySchedules) { if (retrySchedule.retry(currentTimeNanos)) { final KafkaSpoutMessageId msgId = retrySchedule.msgId; final TopicPartition tpForMessage = new TopicPartition(msgId.topic(), msgId.partition()); final Long currentLowestOffset = tpToEarliestRetriableOffset.get(tpForMessage); if(currentLowestOffset != null) { tpToEarliestRetriableOffset.put(tpForMessage, Math.min(currentLowestOffset, msgId.offset())); } else { tpToEarliestRetriableOffset.put(tpForMessage, msgId.offset()); } } else { break; // Stop searching as soon as passed current time } } LOG.debug("Topic partitions with entries ready to be retried [{}] ", tpToEarliestRetriableOffset); return tpToEarliestRetriableOffset; }@Override public boolean isReady(KafkaSpoutMessageId msgId) { boolean retry = false; if (isScheduled(msgId)) { final long currentTimeNanos = Time.nanoTime(); for (RetrySchedule retrySchedule : retrySchedules) { if (retrySchedule.retry(currentTimeNanos)) { if (retrySchedule.msgId.equals(msgId)) { retry = true; LOG.debug("Found entry to retry {}", retrySchedule); break; //Stop searching if the message is known to be ready for retry } } else { LOG.debug("Entry to retry not found {}", retrySchedule); break; // Stop searching as soon as passed current time } } } return retry; }

  • schedule首先判断失败次数是否超过maxRetries,如果超过了则返回false,表示不再调度了,之后KafkaSpout在fail方法回调tupleListener.onMaxRetryReached方法,然后进行ack,表示不再处理了
  • 没有超过maxRetries的话,则创建retrySchedule信息,然后添加到retrySchedules中;retrySchedules是一个TreeSet,默认使用RetryEntryTimeStampComparator,根据nextRetryTimeNanos进行排序,如果相等则按hashCode进行排序
  • earliestRetriableOffsets以及isReady都会用到retrySchedules的信息
小结
  • storm-kafka-client主要针对kafka0.10及以上版本,它引入了ProcessingGuarantee枚举,该枚举有三个值,分别是
    • ProcessingGuarantee.AT_LEAST_ONCE就是开启ack的版本,它类似kafka client的auto commit,在指定interval定期commit;它会维护已经emitted(已经emitted但尚未ack),offsetManagers(已经ack但尚未commit)以及fail需要重试的retrySchedules
    • ProcessingGuarantee.AT_MOST_ONCE,它就不管ack了,在polled out消息的时候同步commit(忽略interval配置),因而该消息最多被处理一次
    • ProcessingGuarantee.NO_GUARANTEE,这个也是不管ack的,不过它跟ProcessingGuarantee.AT_LEAST_ONCE类似,是在指定interval定期commit(都依赖commitTimer),不同的是它是异步
  • ProcessingGuarantee.AT_LEAST_ONCE它结合了storm的ack机制,在spout的ack方法维护emitted(已经emitted但尚未ack);在fail方法将msgId放入到retryService进行重试(这个是ProcessingGuarantee.NO_GUARANTEE所没有的);它跟ProcessingGuarantee.NO_GUARANTEE一样是依赖commitTimer,在initerval期间提交offset信息,不同的是它是commitSync,即同步提交,而且提交的是已经acked的消息;而ProcessingGuarantee.NO_GUARANTEE是异步提交,而且提交的是offset是不管是否在storm spout已经ack,而是以consumer的poll为准的
  • ProcessingGuarantee.AT_MOST_ONCE是在pollKafkaBroker方法里头,在调用完kafkaConsumer.poll之后,调用kafkaConsumer.commitSync进行同步提交commit;它是同步提交,而且不依赖commitTimer,即不是interval提交offset
  • ProcessingGuarantee.NO_GUARANTEE在nextTuple中判断需要commit的时候,调用kafkaConsumer.commitAsync进行异步提交,它跟ProcessingGuarantee.AT_LEAST_ONCE一样,都依赖commitTimer,在initerval期间提交offset,但是它是异步提交,而ProcessingGuarantee.AT_LEAST_ONCE是同步提交
  • nextTuple()方法会pollKafkaBroker会调用kafkaConsumer.poll方法拉取消息,然后将拉取到的消息放入waitingToEmit,之后调用emitIfWaitingNotEmitted方法进行emit或者waiting,如果emit则是调用emitOrRetryTuple方法;由于pollKafkaBroker会执行seek操作将offset移动到每个parition中失败的offset中最小的位置,从那个位置开始重新拉取消息,拉取消息调用了kafkaConsumer.poll方法,KafkaSpoutConfig.ProcessingGuarantee.AT_MOST_ONCE是在这里进行kafkaConsumer.commitSync同步提交offset的;由于包含了要重试的消息,emitOrRetryTuple这里要根据offsetManagers(已经ack等待commit)以及emitted(已经emit等待ack)进行去重判断是否需要调用collector.emit;对于ProcessingGuarantee.AT_LEAST_ONCE类型,这里不仅调用emit方法,还需要维护offsetManagers、emitted及重试信息相关状态,然后回调tupleListener.onEmit方法;对于非ProcessingGuarantee.AT_LEAST_ONCE类型这里仅仅是emit。
doc
  • Storm Apache Kafka integration using the kafka-client jar

    推荐阅读