神经网络|神经网络方法研究及应用,神经网络算法简单例子


神经网络|神经网络方法研究及应用,神经网络算法简单例子
文章图片

什么是神经网络,举例说明神经网络的应用 我想这可能是你想要的神经网络吧!
什么是神经网络:人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络的应用:应用在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。
主要的研究工作集中在以下几个方面:生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
神经网络模型有几种分类方法,试给出一种分类 神经网络模型的分类人工神经网络的模型很多,可以按照不同的方法进行分类AI爱发猫 www.aifamao.com。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。
根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。
而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型2按照网络信息流向分类从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。
前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。反馈型网络的结构与单层全互连结构网络相同。
在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。
BP人工神经网络方法 (一)方法原理人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。
人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。
神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。
常见的激活函数为Sigmoid型。
人工神经元的输入与输出的关系为地球物理勘探概论式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。
常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。
正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。
此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。
在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。
(二)BP神经网络计算步骤(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。(2)输入一个样本X。
(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。
其中输入层的输出等于输入样本值,隐含层和输出层的输入为地球物理勘探概论输出为地球物理勘探概论式中:f为阈值逻辑函数,一般取Sigmoid函数,即地球物理勘探概论式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。
较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。
(4)计算实际输出与理想输出的误差地球物理勘探概论式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。
(5)误差反向传播,修改权值地球物理勘探概论式中:地球物理勘探概论地球物理勘探概论(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。
(三)塔北雅克拉地区BP神经网络预测实例以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射构造面等7个特征为识别的依据。
构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。
在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。
在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。S4井位于测区西南部5线25点,是区内唯一已知井。
该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。
取S4井周围9个点,即4~6线的23~25点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。
BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。
图6-2-4塔北雅克拉地区BP神经网络聚类结果(据刘天佑等,1997)由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。
bp神经网络的算法改进一共有多少种啊!麻烦举例一下! 。
改进点主要在以下几个方面1激励函数的坡度———————误差曲面的平台和不收敛现象————————————————激励函数中引入陡度因子,分段函数做激励函数2误差曲面——————误差平方做目标函数,逼近速度慢,过拟合————————————————标准误差函数中加入惩罚项————————————————信息距离和泛化能力之间的关系,构建新的神经网络学习函数3网络初始权值的选取—————————通常在【0,1】间选取,易陷入局部最小—————————————————复合算法优化初始权值—————————————————Cauchy不等式和线性代数方法得最优初始权值4改进优化算法————————标准BP采用梯度下降法,局部最小收敛慢——————————————————共扼梯度法、Newton法、Gauss一Ncwton法、Lvenber_Marquardt法、快速传播算法——————————————————前馈网络学习算法,二阶学习算法,三项BP算法,最优学习参数的BP算法。
5.优化网络结构————————拓扑结构中网络层数、各层节点数、节点连接方式的不确定性——————————————构造法和剪枝法(权衰减法、灵敏度计算方法等)——————————————网络结构随样本空间进行变换,简化网络结构6混合智能算法————————与遗传算法、进化计算、人工免疫算法、蚁群算法、微粒群算法、————————模糊数学、小波理论、混沌理论。
细胞神经网络。
什么是离散型神经网络 近年来离散型时滞神经网络的稳定性一直是人们研究的热点问题。考虑到在网络中信号从一点传送到另一点可能要经过很多网络段,而不同的网络段一般有不同的传输条件,这就导致多个加性时滞。
研究多个加性时滞的离散型神经网络的稳定性具有重要的理论意义和实际价值。对于这类神经网络,本文以两个加性时滞为例首先研究了确定参数情况下的全局指数稳定性问题。
利用Lyapunov稳定性理论和线性矩阵不等式方法,得到了这类神经网络全局指数稳定性条件。该条件保守性小而易于检验。
当参数不确定时,对于两个加性时滞的离散神经网络研究了鲁棒渐近稳定性问题,得到了这类不确定神经网络鲁棒渐近稳定的新条件。
最后,对于确定参数情况下的稳定性结果,本文进行了改进而得到了简洁而保守性小的稳定性判据。论文按以下结构进行组织:第一章介绍了多个加性时滞离散神经网络稳定性的研究背景,在此基础上提出了本文的研究问题。
第二章介绍了本文所需的预备知识,包括李亚普诺夫稳定性理论和不等式定理等。第三章研究了确定参数情况下的带两个加性时滞离散神经网络的全局指数稳定性问题。
通过构造Lyapunov-Krasovskii泛函,利用自由权值矩阵方法处理该Lyapunov-Krasovskii泛函的差分,得到了这类神经网络全局指数稳定性结果。
所得稳定性条件可方便地使用MATLAB中的LMI工具箱检验。第四章对范数有界参数不确定情况下的带两个加性时滞离散神经网络,研究了鲁棒渐近稳定性问题。
采用李亚普诺夫函数方法,得到了这类不确定神经网络的鲁棒渐近稳定性判据,进一步举例说明了该判据的有效性。第五章对于第三章所得结果进行了改进。
通过构造新的Lyapunov-Krasovskii泛函,应用一种新技术计算该Lyapunov-Krasovskii泛函的差分,得到了新的稳定性结果。
所得稳定性结果涉及的矩阵变量少,而且具有较小的保守性。第六章是全文总结,并指出了下一步要研究的问题。
神经网络中学习函数和训练函数的区别是什么,可以举个例子吗 。
)编程理论作为比较成熟的算法,软件Matlab中有神经网络工具箱,所以可以借助Matlab神经网络工具箱的强大功能,在此基础上进行二次开发,从繁琐的编程工作中解脱出来,大大提高工作效率.Matlab的神经网络工具箱是在Matlab环境下所开发出来的许多工具箱之一,它以人工神经网络理论为基础,用Matlab语言构造出典型神经网络的激活函数(如S型、线性等激活函数),使使用者对所选定网络的输出计算编程对激活函数的调用;另外,根据各种修改网络权值的规律,加上网络的训练过程,用Matlab编写出各种网络训练的子程序.这样,使用者可以根据自己的应用要求,直接调用(或加进自己编写的)神经网络子函数,而不必要从事繁琐的编程.基于Matlab的BP神经网络编程过程如下:(1)对样本集进行归一化确定输入样本和输出样本,并对它们进行归一化,将输入和输出样本变换到(0.1,0.9)区间,由于Matlab的归一化函数premnmx把数据变换到(-1,1)之间,所以使用自编premnmx2归一化函数.(2)创建BP神经网络在样本集确定之后,即可进行网络的结构设计,在Matlab中一般使用newff创建函数,它不但创建了网络对象,还自动初始化网络的权重和阈值.如果需要重新初始化网络权重和阈值,可以使用Init函数.关键语句如下:net=newff(输入样本的取值范围,[网络各层的神经元数目],{网络各层神经元的激活函数},‘训练函数',‘学习函数’,‘性能函数’)一般选用三层BP网络,输入层、输出层的神经元个数根据具体情况确定,而隐层神经元个数目前多采用经验的方法确定.(3)设置网络的训练参数net.trainParam.epochs―最大收敛次数;―收敛误差;―显示间隔;以上在一般的神经网络训练中都有使用,本文使用Levenberg-Marquart优化算法进行训练,还需设置的参数有:―Levenberg-Marquart优化算法中的_dec―的缩减因子;
人工神经网络的知识表示形式和推理机制 神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。
前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。Hopfield神经网络是反馈网络的代表。
Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。基本特征非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。
人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。一个神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
【神经网络|神经网络方法研究及应用,神经网络算法简单例子】以上内容参考:百度百科-人工神经网络。

    推荐阅读