文章图片
如何简单形象又有趣地讲解神经网络是什么? 神经网络最重要的用途是分类,为了让大家对分类有个直观的认识,咱们先看几个例子:垃圾邮件识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是垃圾邮件。
疾病判断:病人到医院去做了一大堆肝功、尿检测验,把测验结果送进一个机器里,机器需要判断这个病人是否得病,得的什么病。
猫狗分类:有一大堆猫、狗照片,把每一张照片送进一个机器里,机器需要判断这幅照片里的东西是猫还是狗。这种能自动对输入的东西进行分类的机器,就叫做分类器。分类器的输入是一个数值向量,叫做特征(向量)。
在第一个例子里,分类器的输入是一堆0、1值,表示字典里的每一个词是否在邮件中出现,比如向量(1,1,0,0,0……)就表示这封邮件里只出现了两个词abandon和abnormal;第二个例子里,分类器的输入是一堆化验指标;第三个例子里,分类器的输入是照片,假如每一张照片都是320*240像素的红绿蓝三通道彩色照片,那么分类器的输入就是一个长度为320*240*3=230400的向量。
分类器的输出也是数值。
第一个例子中,输出1表示邮件是垃圾邮件,输出0则说明邮件是正常邮件;第二个例子中,输出0表示健康,输出1表示有甲肝,输出2表示有乙肝,输出3表示有饼干等等;第三个例子中,输出0表示图片中是狗,输出1表示是猫。
分类器的目标就是让正确分类的比例尽可能高。一般我们需要首先收集一些样本,人为标记上正确分类结果,然后用这些标记好的数据训练分类器,训练好的分类器就可以在新来的特征向量上工作了。
Hopfield神经网络用python实现讲解? 神经网络结构具有以下三个特点:神经元之间全连接,并且为单层神经网络AI爱发猫 www.aifamao.com。每个神经元既是输入又是输出,导致得到的权重矩阵相对称,故可节约计算量。
在输入的激励下,其输出会产生不断的状态变化,这个反馈过程会一直反复进行。
假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。
Hopfield网络可以储存一组平衡点,使得当给定网络一组初始状态时,网络通过自行运行而最终收敛于这个设计的平衡点上。
当然,根据热力学上,平衡状态分为stablestate和metastablestate,这两种状态在网络的收敛过程中都是非常可能的。为递归型网络,t时刻的状态与t-1时刻的输出状态有关。
之后的神经元更新过程也采用的是异步更新法(Asynchronous)。Hopfield神经网络用python实现。
《神经网络与深度学习讲义》pdf下载在线阅读全文,求百度网盘云资源
神经网络的准确率是怎么计算的? 其实神经网络的准确率的标准是自己定义的。我把你的例子赋予某种意义讲解:1,期望输出[1001],每个元素代表一个属性是否存在。
像着4个元素分别表示:是否肺炎,是否肝炎,是否肾炎,是否胆炎,1表示是,0表示不是。2,你的神经网络输出必定不可能全部都是输出只有0,1的输出。
绝大部分是像[0.99680.00000.00010.9970]这样的输出,所以只要输出中的某个元素大于一定的值,例如0.7,我们就认为这个元素是1,即是有某种炎。
否则为0,所以你的[0.99680.00000.00010.9970]可以看成是[1,0,0,1],。
3,所以一般神经网络的输出要按一定的标准定义成另一种输出(像上面说的),看调整后的输出和期望输出是否一致,一致的话算正确,不一致算错误。
4,用总量为n的检验样本对网络进行评价,输出调整后的输出,统计错误的个数,记为m。所以检验正确率可以定义为n/m。
神经网络以及小波分析法在汽车发动机故障检修中有什么应用? 汽车是我们生活中常用的将交通工具,那么神经网络和小波分析法在汽车发动机故障检修中有什么应用呢?大家请看我接下来详细地讲解。一,小波分析在故障检修中的应用小波包分解与故障特征提取。
缸盖表面的振动信号由一系列瞬态响应信号组成,分别代表气缸的振动源响应信号:1为气缸的燃烧激励响应;
2是排气阀打开时的节流阀冲击。
气门间隙异常时,振动信号的能量大于目前冲击力作用时,振动信号的主要组件目前离冲击力稳定的振动信号和噪声,信号能量相对较小。
因此,可以利用每个频带的能量变化来提取故障特征,通过小波包分解系数{4]得到频带的能量。二,神经网络在故障检修中的作用神经网络与故障识别的基本原理。
人工神经网络以其大规模并行处理、分布式存储、自组织、自适应和自学习的能力,以及适合于处理不准确或模糊的信息而备受关注5]。其中,最成熟的是BP神经网络。值,直到输出接近理想输出信号6。
因此,BP神经网络可以以任意精度逼近任意有限维函数,适用于模式识别。现在对每个工况信号取5个样本,按照⒉部分所述步骤对35组样本信号进行编程,提取样本信号的能量特征向量。
三,小波分析法和神经网络应用总结为了实现柴油机气门机构的非解体故障诊断,本文将对测量的气缸盖振动信号进行小波阈值降噪预处理。然后根据信号的频率特性,对信号进行时频分析后进行小波包分解。
所构造的能量特征向量准确地反映了气门间隙状态下缸盖振动信号能量的变化。
实验表明,利用能量特征向量,BP神经网络能更准确地完成从振动信号空间到气门间隙状态空间的非线性映射,能更好地满足柴油机状态检测和故障诊断的要求。
关于循环神经网络RNN,隐藏层是怎么来的? RNN的隐藏层也可以叫循环核,简单来说循环核循环的次数叫时间步,循环核的个数就是隐藏层层数。
循环核可以有两个输入(来自样本的输入x、来自上一时间步的激活值a)和两个输出(输出至下一层的激活值h、输出至本循环核下一时间步的激活值a),输入和输出的形式有很多变化,题主想了解可以上B站搜索“吴恩达深度学习”其中第五课是专门对RNN及其拓展进行的讲解,通俗易懂。
B站链接:网页链接参考资料:网页链接。
卷积神经网络和深度神经网络的区别是什么 没有卷积神经网络的说法,只有卷积核的说法。电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。
如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。用Photoshop等图像处理软件,施展的魔法几乎是无止境的。
四种基本图像处理效果是模糊、锐化、浮雕和水彩。?这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。
为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。
对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。?用PhotoshopCS6,可以很方便地对图像进行处理。
模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。
锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。
浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。
要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。
然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。希望我能帮助你解疑释惑。
BP神经网络 没有数据还真一眼看不出你的是出了什么原因,不过你这个应该是做模式识别吧,识别它是哪一类。
一般做模式识别会用Patternnet,而不用feedforwardnet,主要是Patternnet的输出是在0,1之间的。
楼主可以借鉴matlab自带的螃蟹识别例子,你的matlab路径\toolbox\nnet\nndemos\classify_crab_demo.m《神经网络之家》上也有一篇讲解的例子:一个神经网络模式识别的例子------螃蟹识别,楼主可以看看。
更详细的需要楼主贴出数据了。
【深度学习|神经网络讲解与实例,如何理解神经网络】
推荐阅读
- 神经网络|神经网络方法研究及应用,神经网络算法简单例子
- MySQL零基础入门|MySQL 数据库基础知识(系统化一篇入门)
- 深度学习|迁移学习 & 凯明初始化
- opencv|最近opencv又报了啥错(一)
- yolov5|跑yolov5又出啥问题了(1)p,r,map全部为0
- opencv|基于opencv的实时睡意检测系统
- opencv|基于opencv的实时停车地点查找
- 大数据|滴滴开源了哪些有意思的项目()
- 数据库|滴滴技术牛逼吗(看它开源了哪些有意思的项目)