这里,我在刘老师的基础上做了改进,将线性函数改为了y = w x + b y = wx+b y=wx+b,以下实现都是基于此线性函数做的。
1. 梯度下降
import numpy as np
import matplotlib.pyplot as plt
x_data = https://www.it610.com/article/[1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]w = 1.0
b = 1.0def forward(x):
return x * w + b# 损失函数
def cost(xs, ys):
cost = 0
for x, y in zip(xs, ys):
y_pred = forward(x)
cost += (y_pred - y) ** 2
return cost / len(xs)# 迭代,计算损失值
cost_list = []
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_w, grad_b = gradient(x_data, y_data)
w -= 0.01 * grad_w
b -= 0.01 * grad_b
cost_list.append(cost_val)
print('Epoch:', epoch, 'w=', w,'b=', b, 'loss=', cost_val)
print('Predict (after training)', 4, forward(4))# 绘制图像
epoches = np.arange(0, 100, 1)
plt.xlabel('epoch')
plt.ylabel('cost')
plt.plot(epoches, cost_list)
plt.grid()
plt.show()
文章图片
2. 随机梯度下降
x_data = https://www.it610.com/article/[1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]w = 1.0
b = 1.0def forward(x):
return x * w + b# 随机梯度下降算法
def sgd(x, y):
y_pred = forward(x)
grad_w = 0
grad_b = 0
grad_w += 2 * x * (y_pred - y)
grad_b += 2 * (y_pred - y)
return grad_w, grad_b# 损失函数
def cost_sgd(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2# 迭代,计算损失值
cost_list = []
print('Predict (before training)', 4, forward(4))
for epoch in range(100):
for x, y in zip(x_data, y_data):
cost_val = cost_sgd(x, y)
grad_w, grad_b = sgd(x, y)
w -= 0.01 * grad_w
b -= 0.01 * grad_b
cost_list.append(cost_val)
print('Epoch:', epoch, 'w=', w, 'b=', b, 'loss=', cost_val)
print('Predict (after training)', 4, forward(4))# 绘制图像
epoches = np.arange(0, 300, 1)
plt.xlabel('epoch')
plt.ylabel('cost')
plt.plot(epoches, cost_list)
plt.grid()
plt.show()
【深度学习|2. 刘二大人《PyTorch深度学习实践》作业--梯度下降】
文章图片
推荐阅读
- 深度学习|【深度学习-吴恩达】L1-4 深层神经网络
- 深度学习|A brief Introduction to Continue Learning / Life long Learning
- 深度学习|COCO数据集介绍
- 连续学习|图解连续学习中的蓄水池抽样算法(The Illustrated Reservoir sampling)
- 我的教程|Python 快速规范代码
- 精简|精简 opencv python_01_opencv_python_基本图像处理
- python|Keras实现——预训练卷积神经网络(VGG16)
- 人群接触网络中的SIR疫情模拟——Python实现
- python|Opencv学习笔记二——基本图像操作