支持向量机(Support Vector Machine,SVM) 是一种用于分类问题的监督算法。SVM模型将实例表示为空间中的点,将使用一条直线(超平面)分隔数据点,且是两类数据间隔(边距:超平面与最近的类点之间的距离)最大。只通过几个支持向量就确定了超平面,说明它不在乎细枝末节,所以不容易过拟合,但不能确保一定不会过拟合。可以处理复杂的非线性问题。
如下图:H1 没有将这两个类分开。但 H2 有,不过只有很小的边距。而 H3 以最大的边距将它们分开了。
文章图片
python实现代码如下:
from numpy import *
import matplotlib.pyplot as plt
import operator
import time#处理数据集
def loadDataSet(fileName):
dataMat = []
labelMat = []
with open(fileName) as fr:
for line in fr.readlines():
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat, labelMatdef selectJrand(i, m):
j = i
while (j == i):
j = int(random.uniform(0, m))
return jdef clipAlpha(aj, H, L):
if aj > H:
aj = H
if L > aj:
aj = L
return ajclass optStruct:
def __init__(self, dataMatIn, classLabels, C, toler):
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m, 1)))
self.b = 0
self.eCache = mat(zeros((self.m, 2)))def calcEk(oS, k):
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
Ek = fXk - float(oS.labelMat[k])
return Ekdef selectJ(i, oS, Ei):
maxK = -1
maxDeltaE = 0
Ej = 0
oS.eCache[i] = [1, Ei]
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList:
if k == i:
continue
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k
maxDeltaE = deltaE
Ej = Ek
return maxK, Ej
else:
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ejdef updateEk(oS, k):
Ek = calcEk(oS, k)
oS.eCache[k] = [1, Ek]def innerL(i, oS):
Ei = calcEk(oS, i)
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
j, Ej = selectJ(i, oS, Ei)
alphaIold = oS.alphas[i].copy()
alphaJold = oS.alphas[j].copy()
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if (L == H):
# print("L == H")
return 0
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
if eta >= 0:
# print("eta >= 0")
return 0
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
updateEk(oS, j)
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
# print("j not moving enough")
return 0
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
updateEk(oS, i)
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
b2 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
oS.b = b2
else:
oS.b = (b1 + b2) / 2.0
return 1
else:
return 0def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
"""
输入:数据集, 类别标签, 常数C, 容错率, 最大循环次数
输出:目标b, 参数alphas
"""
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
iterr = 0
entireSet = True
alphaPairsChanged = 0
while (iterr < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet:
for i in range(oS.m):
alphaPairsChanged += innerL(i, oS)
# print("fullSet, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
iterr += 1
else:
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i, oS)
# print("non-bound, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
iterr += 1
if entireSet:
entireSet = False
elif (alphaPairsChanged == 0):
entireSet = True
# print("iteration number: %d" % iterr)
return oS.b, oS.alphasdef calcWs(alphas, dataArr, classLabels):
"""
输入:alphas, 数据集, 类别标签
输出:目标w
"""
X = mat(dataArr)
labelMat = mat(classLabels).transpose()
m, n = shape(X)
w = zeros((n, 1))
for i in range(m):
w += multiply(alphas[i] * labelMat[i], X[i, :].T)
return wdef plotFeature(dataMat, labelMat, weights, b):
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = [];
ycord1 = []
xcord2 = [];
ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 0])
ycord1.append(dataArr[i, 1])
else:
xcord2.append(dataArr[i, 0])
ycord2.append(dataArr[i, 1])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(2, 7.0, 0.1)
y = (-b[0, 0] * x) - 10 / linalg.norm(weights)
ax.plot(x, y)
plt.xlabel('X1');
plt.ylabel('X2')
plt.show()#调用函数
def main():
#数据集初始化
trainDataSet, trainLabel = loadDataSet('SVMSet.txt')
b, alphas = smoP(trainDataSet, trainLabel, 0.6, 0.0001, 40)
ws = calcWs(alphas, trainDataSet, trainLabel)
print("ws = \n", ws)
print("b = \n", b)
plotFeature(trainDataSet, trainLabel, ws, b)if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
所用数据集 SVMSet.txt 如下:
3.542485 1.977398 -1
3.018896 2.556416 -1
7.551510 -1.580030 1
2.114999 -0.004466 -1
8.127113 1.274372 1
7.108772 -0.986906 1
8.610639 2.046708 1
2.326297 0.265213 -1
3.634009 1.730537 -1
0.341367 -0.894998 -1
3.125951 0.293251 -1
2.123252 -0.783563 -1
0.887835 -2.797792 -1
7.139979 -2.329896 1
1.696414 -1.212496 -1
8.117032 0.623493 1
8.497162 -0.266649 1
4.658191 3.507396 -1
8.197181 1.545132 1
1.208047 0.213100 -1
1.928486 -0.321870 -1
2.175808 -0.014527 -1
7.886608 0.461755 1
3.223038 -0.552392 -1
3.628502 2.190585 -1
7.407860 -0.121961 1
7.286357 0.251077 1
2.301095 -0.533988 -1
-0.232542 -0.547690 -1
3.457096 -0.082216 -1
3.023938 -0.057392 -1
8.015003 0.885325 1
8.991748 0.923154 1
7.916831 -1.781735 1
7.616862 -0.217958 1
2.450939 0.744967 -1
7.270337 -2.507834 1
1.749721 -0.961902 -1
1.803111 -0.176349 -1
8.804461 3.044301 1
1.231257 -0.568573 -1
2.074915 1.410550 -1
-0.743036 -1.736103 -1
3.536555 3.964960 -1
8.410143 0.025606 1
7.382988 -0.478764 1
6.960661 -0.245353 1
8.234460 0.701868 1
8.168618 -0.903835 1
1.534187 -0.622492 -1
9.229518 2.066088 1
7.886242 0.191813 1
2.893743 -1.643468 -1
1.870457 -1.040420 -1
5.286862 -2.358286 1
6.080573 0.418886 1
2.544314 1.714165 -1
6.016004 -3.753712 1
0.926310 -0.564359 -1
0.870296 -0.109952 -1
2.369345 1.375695 -1
1.363782 -0.254082 -1
7.279460 -0.189572 1
1.896005 0.515080 -1
8.102154 -0.603875 1
2.529893 0.662657 -1
1.963874 -0.365233 -1
8.132048 0.785914 1
8.245938 0.372366 1
6.543888 0.433164 1
-0.236713 -5.766721 -1
8.112593 0.295839 1
9.803425 1.495167 1
1.497407 -0.552916 -1
1.336267 -1.632889 -1
9.205805 -0.586480 1
1.966279 -1.840439 -1
8.398012 1.584918 1
7.239953 -1.764292 1
7.556201 0.241185 1
9.015509 0.345019 1
8.266085 -0.230977 1
8.545620 2.788799 1
9.295969 1.346332 1
2.404234 0.570278 -1
2.037772 0.021919 -1
1.727631 -0.453143 -1
1.979395 -0.050773 -1
8.092288 -1.372433 1
1.667645 0.239204 -1
9.854303 1.365116 1
7.921057 -1.327587 1
8.500757 1.492372 1
1.339746 -0.291183 -1
3.107511 0.758367 -1
2.609525 0.902979 -1
3.263585 1.367898 -1
2.912122 -0.202359 -1
1.731786 0.589096 -1
2.387003 1.573131 -1
该代码运行三次结果不一,第一个拟合情况较差,第二次才显示为正确的SVM划分,第三次及之后趋于稳定,如下所示:
文章图片
文章图片
【机器学习|机器学习----支持向量机 (Support Vector Machine,SVM)算法原理及python实现】
文章图片
推荐阅读
- 人工智能|机器学习方法之支持向量机(Support Vector Machine,SVM)
- 机器学习|机器学习-决策树之回归树python实战(预测泰坦尼克号幸存情况)(三)
- 机器学习|《python机器学习基础教程》笔记(第2章监督学习)(第2部分)
- 数学建模算法|2022国赛数学建模思路算法分析—XGboost
- 数学建模算法|2022国赛数学建模思路算法案例k—means聚类分析
- 数学建模算法|2022国赛数学建模思路案例分析—因子分析
- 数学建模比赛|2022华为杯研究生数学建模赛题思路分析
- 机器学习|2021年华为杯数学建模比赛——二分类与回归问题(1)
- #|使用基于非支配排序的鲸鱼优化算法的生产过程中关键质量特征识别的多目标特征选择(Matlab代码实现)