pytorch|pytorch 实现 Style Transfer


pytorch 实现 Style Transfer

设CNN中第 l l l 层风格图片、内容图片、生成图片的feature map分别为 S l S^l Sl、 C l C^l Cl、 G l G^l Gl。
第 l l l层内容损失函数定义为L C l = ∑ i j ( C i j l ? G i j l ) 2 L_C^l=\sum\limits_{ij}(C^l_{ij}-G^l_{ij})^2 LCl?=ij∑?(Cijl??Gijl?)2
对于 feature mapF F F,定义 F ( k k ′ ) F^{(kk')} F(kk′) 为第 k k k通道和第 k ′ k' k′通道 feature map 的内积,则第 l l l层风格损失函数定义为L S l = 1 ( n H n W n C ) 2 ∑ k k ′ ( S l ( k k ′ ) ? G l ( k k ′ ) ) 2 L_S^l=\frac{1}{(n_Hn_Wn_C)^2}\sum\limits_{kk'}(S^{l(kk')}-G^{l(kk')})^2 LSl?=(nH?nW?nC?)21?kk′∑?(Sl(kk′)?Gl(kk′))2
CNN框架采用VGG19,梯度下降采用L-BFGS。

import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from PIL import Image import matplotlib.pyplot as plt import torchvision.transforms as transforms import torchvision.models as models import copydevice = torch.device("cuda" if torch.cuda.is_available() else "cpu") imsize = 512 if torch.cuda.is_available() else 128transform = transforms.Compose([ transforms.Resize(512), transforms.CenterCrop(imsize), transforms.ToTensor()])def image_loader(image_name): image = Image.open(image_name) image = image.convert('RGB') image = transform(image).unsqueeze(0) return image.to(device, torch.float)style_img = image_loader("./data/images/the_starry_night.jpg") content_img = image_loader("./data/images/STJU.jpg") assert style_img.size() == content_img.size()def trans(tensor): image = tensor.cpu().clone() image = image.squeeze(0) image = image.numpy() image = image.transpose((1, 2, 0)) return imageclass ContentLoss(nn.Module): def __init__(self, target): super(ContentLoss, self).__init__() self.target = target.detach() def forward(self, input): self.loss = F.mse_loss(input, self.target) return inputdef gram_matrix(input): a, b, c, d = input.size()features = input.view(a * b, c * d) G = torch.mm(features, features.t()) return G.div(a * b * c * d)class StyleLoss(nn.Module): def __init__(self, target): super(StyleLoss, self).__init__() self.target = gram_matrix(target).detach()def forward(self, input): G = gram_matrix(input) self.loss = F.mse_loss(G, self.target) return inputcnn = models.vgg19(pretrained=True).features.to(device).eval()cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)class Normalization(nn.Module): def __init__(self, mean, std): super(Normalization, self).__init__() self.mean = mean.view(-1, 1, 1) self.std = std.view(-1, 1, 1)def forward(self, img): return (img - self.mean) / self.stdcontent_layers_default = ['conv_4'] style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img, content_layers=content_layers_default, style_layers=style_layers_default): cnn = copy.deepcopy(cnn) normalization = Normalization(normalization_mean, normalization_std).to(device)content_losses = [] style_losses = []model = nn.Sequential(normalization)i = 0 for layer in cnn.children(): if isinstance(layer, nn.Conv2d): i += 1 name = 'conv_{}'.format(i) elif isinstance(layer, nn.ReLU): name = 'relu_{}'.format(i) layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d): name = 'pool_{}'.format(i) elif isinstance(layer, nn.BatchNorm2d): name = 'bn_{}'.format(i) else: raise RuntimeError('Unrecogniced layer: {}'.format(layer/__class__.__name__))model.add_module(name, layer)if name in content_layers: target = model(content_img).detach() content_loss = ContentLoss(target) model.add_module("content_loss_{}".format(i), content_loss) content_losses.append(content_loss)if name in style_layers: target_feature = model(style_img).detach() style_loss = StyleLoss(target_feature) model.add_module("style_loss_{}".format(i), style_loss) style_losses.append(style_loss)for i in range(len(model)-1, -1, -1): if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): breakmodel = model[:(i + 1)]return model, style_losses, content_lossesinput_img = content_img.clone()def get_input_optimizer(input_img): optimizer = optim.LBFGS([input_img.requires_grad_()]) return optimizerdef run_style_tranfer(cnn, normalization_mean, normalization_std, content_img, style_img, input_img, num_steps=300, style_weight=10000000000, content_weight=1): print('Building the style transfer model..')model, style_losses, content_losses = get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img)optimizer = get_input_optimizer(input_img)print('Optimizing..') run = [0] while run[0] < num_steps:def closure(): input_img.data.clamp_(0, 1)optimizer.zero_grad() model(input_img) style_score = 0.0 content_score = 0.0for sl in style_losses: style_score +=sl.loss for cl in content_losses: content_score +=cl.lossstyle_score *= style_weight content_score *= content_weightloss = style_score + content_score loss.backward()run[0] += 1 print(run[0]) if run[0] % 50 == 0: print("run {}:".format(run)) print('Style Loss : {:4f} Content Loss: {:4f}'.format( style_score.item(), content_score.item())) print()return style_score + content_scoreoptimizer.step(closure)input_img.data.clamp_(0, 1)return input_imgoutput = run_style_tranfer(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, input_img)style_img = trans(style_img) content_img = trans(content_img) output = trans(output.detach())f, ax = plt.subplots(1, 3) ax[0].imshow(style_img) ax[0].set_title('Style Image') ax[1].imshow(content_img) ax[1].set_title('Content Image') ax[2].imshow(output) ax[2].set_title('Transposed Image') plt.show()

【pytorch|pytorch 实现 Style Transfer】迭代300次效果如下:
pytorch|pytorch 实现 Style Transfer
文章图片

    推荐阅读