教学智慧彰显在细节中?——张齐华教学案例集

陈惠芳
张齐华,男,1976年6月生,江苏海门人。1997年任教于海门市实验小学,2004年调入南京市北京东路小学工作,任教科室主任。一直致力于数学课堂文化的探索与实践,参与数学课程标准苏教版小学数学教材的编写工作。先后获南通市骨干教师、南京市优秀青年教师等称号。
密斯·凡·德罗是20世纪最伟大的建筑师之一,在被要求用一句话来描述他成功的原因时,他只说了5个字,“成功在细节”。成功的课堂教学又何尝不是如此。对细节的正确把握,是一堂课出彩的关键。
在教学《分数的初步认识》一课时,张齐华老师将教材(图略)中的等分线作了隐藏处理,先出示第一条,告诉学生把一张纸条全部涂色,可以用数“1”来表示,请学生估计一下,现在涂色部分是几分之一。
学生有的猜1/3, 有的猜1/2。课件验证后得出涂色部分是1/3。教师继续出示第三张纸条,同样请学生估计。许多学生一下子就估计出是1/6,老师让学生交流是怎么估的,有没有什么窍门。原来学生用第三张与第二张纸条的1/3进行比较,发现这次涂色部分只有它的一半,所以确定用1/6来表示。
教师随即总结说:“瞧,借助观察和比较进行估计,这是多好的思考策略呀!”这个小小的一个细节却有思想在其中。然而,精彩的还不仅仅停留于此,接下去,张老师凭借这张小纸条做大文章,让学生观察这里的涂色部分和对应的数,并谈谈发现。学生有的发现了同样一张纸条,它的1/3要比1/6大;1里面有3个1/3,1里面有6个1/6;平均分的份数越多,涂色的一份也就越小……学生唧唧喳喳,思维异常活跃。这是一个充满灵性的课堂,从预设教案到动态生成,从学生估计意识的培养,到数学思维策略的综合训练,再到极限思想的有机渗透,朴素的内容承载着丰厚的数学内涵,一切精彩源于老师关注细节。
从这样的角度去分析,笔者还发现在教学《交换律》一课时,张老师勇做教材的创造者,而不是消费者。
张老师先讲了一个“朝三暮四”的故事,接着问学生想说些什么。
结合学生发言,教师板书:3+4=4+3。
师:观察这一等式,你有什么发现?
生1:我发现,交换两个加数的位置和不变。(教师板书这句话)
师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师随即出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?
生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。
生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其他两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师随即将生1给出的结论中的“。”改为“?”)。既然是猜想,那么我们还得——
生:验证……
北京师范大学数学科学学院曹一鸣先生在评课时认为:从整节课看,“加法结合律”只是一个触点,“减法中是否也会有交换律?”“乘法、除法中呢?”等新问题,则是原有触点中诞生的一个个新的生长点。统整到一起时,作为某一特定运算的“交换律知识”被弱化了,而“交换律”本身、“变与不变”的辩证关系、“猜想-实验-验证”的思考路线、由“此知”及“彼知”的数学联想等却一一获得凸显,成为超越于知识之上的更高的数学课堂追求。当我们在课堂上欣赏孩子沉思时的宁静、疑惑时的迷茫、顿悟时的愉悦、争辩时的激越,聆听时的惊讶、论证时的流畅,成功后的欢畅时……一个享受思辨的课堂,皆因张老师对细节的关注而精彩纷呈。
基于这样的思考,我还发现课堂上密切关注学习动态、对学生资源的有效利用,也是张老师引领学生进入思考境界的法宝。在学生写36约数的练习中,他有意选择了两份不同的作品进行讲评:
36的约数:1、2、3、4、6、9、12、18、36。
36的约数:1、36,2、18,3、12,4、9,6。
他首先让两个孩子分别介绍自己寻找约数的方法:第一个孩子说采用的“逐一法”,第二个孩子采用的是“配对法,两个两个找”。张老师不动声色,让其他同学比较哪一种方法最好,为什么?很多孩子自然认为“配对法”好,一一寻找,不易丢失答案。张老师并不满足于这样的“异口同声”,立即反问:“难道第一种方法没有值得肯定的吗?”这幽默一问,化解了第一个孩子的窘境。孩子们静心思考,独立反省,终获顿悟。最后,他追问那个采用“逐一法”的孩子:“如果继续让你找因数,你打算采用哪一种方法?”在这个教学细节中,张老师将“比较”方法演绎得淋漓尽致:第一层次的比较,学生学会了不同方法之间获得“最优化”的思想;第二个层次比较,学会了“辩证分析”的思想,看问题不能简单化;第三个层次的比较,获得了“欣赏借鉴”的思想,只有放大别人的优点,才能共享智慧之果。三次“比较”,不仅仅是一种数学方法的传授,更是一种思想价值的渗透。
用一颗灵动的心去感应,用一双智慧的眼睛去捕捉,用“蹲下身,走进去”的育人情怀引领学生触摸数学的精彩,贵在于细微处着笔墨。张老师对教材的深加工,对文本的精加工,随时捕捉学生的疑问、想法、创见等精彩瞬间,使课堂成为师生互动、心灵对话的舞台,成为师生共同创造奇迹、唤醒各自沉睡的潜能的时空。
-----发表于《中国教育报》2007年6月15日第5版
张齐华教学艺术系列(二)
评价的智慧:如芬芳的野花一路绽放
陈惠芳
“听张齐华的课很舒服、很轻松、很悦耳,很自在……”这是老师们的共识,而这又或许与张老师丰厚的人文底蕴、扎实的语言功底,尤其是他那清新自然、精炼洒脱的评价语有关。细数他的数学课堂,我们能听到:
当有学生提出不同意见时,张老师没有忽略前一位学生的心理感受,而是面带微笑着对他说:“有人挑战你了,高兴吗?”“高兴!”学生自信地回答。
当出示了练习题时,张老师会伴着温暖的眼光问:“同学们,有困难吗?那么,谁先来说?”在展示学生作品时,张老师会用关注的目光问:“你想给这份作业提点什么?”“还有什么需要补充吗,对于他的方法想不想说点什么?”然后转身告诉其他学生,没有必要迷信别人。当觉得没有其他答案时,张老师会提醒大家:“没有不同想法也可以大声说出来。”他的话语不由得让人感到温馨。
我们还欣赏到这样一组镜头:
师:瞧!刚才的一折,一撕,还真创造出了数学中的轴对称图形。说实话,数学呀,有时就这么简单。如果没有记错的话,大家对轴对称图形并不陌生,在我们认识的平面图形中,应该也有一些轴对称图形。
(出示轴对称图形的习题,让学生判断是否为轴对称图形)
师:练习之前,我要给你们一些忠告,有时候,不要过分相信自己的眼睛,看上去像轴对称图形的也许不是,看上去不像的也许偏偏却是。
(教师让学生根据经验大胆猜想,选择自己最有把握的说一说,也可以结合手中的学具,6人小组合作,一起折折,验证自己的猜想。学生在小组内进行交流,对于平行四边形是不是轴对称图形引起了争论。)
生1:我认为平行四边形是轴对称图形,沿着高把它剪下来,可以拼成一个长方形,对折后,左右两边能完全重合。
生2:我认为平行四边形不是轴对称图形,把平行四边形对折后,两边的图形不能完全重合,所以我认为它不是。
师:(特意走过去,跟生2握着手)我跟你握手不是我赞成你的说法,而是感谢你为课堂创造出了两种不同的声音。想想,要是我们的课堂只有一种声音,那该多单调啊!
(在学生再次进行操作实践后,第一个学生改变了自己的看法,知道了平行四边形不是轴对称图形)
师:你的退让我们更接近真理!
(在接下去的环节中,教师引导学生找出对称图形的对称轴)
师:都说实践出真知。数学讲究的是深究,就这5个图形,难道你们就不想深入研究说点什么?这个梯形是轴对称图形,但是……
此时无声胜有声。充满智慧的评价一下子扣紧了学生的心弦,激活了学生的思维。学生盯着那5个图形,继续找呀,辩呀,老师精彩的旁白无疑成了学生思维的推进器。
他的评价语极富哲理。学生在探讨9个珠子组成的两位数能被9整除时,马上误以为8也有这样的规律。“真是这样吗?”张老师诱发学生进一步思考。当学生发现8个珠子不行,7个珠子也不行的时候,又产生了“其他都不行”的错误想法。张老师接口说:“可别盲目地否定一切。”寥寥数语,张弛有度。
在“圆的认识”一课中,有学生交流画圆经验时说:“我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。”对于这样的意外生成,张老师评价说:“尽管这一方法没有能在白纸上最终‘画’出一个圆,但他们的创造仍然是十分美妙,不是吗?”课堂里响起了热烈的掌声。这掌声,源于学生内心的一种欣赏与激励,一种接纳与认可,是一种真情流淌。
张老师的语言富有磁力,常常是“未成曲调先有情”,蕴含着无限的意趣。如“省略号来得太迟”、“边做作业边思考,再作出决策”、“不要忙于下结论”,他时刻召唤学生积极地思考。
一位学生在写36的因数时,漏掉了2。面对学生的错误,张老师幽默地说道:“看了以后,你想说点什么吗?”“听听他是怎么找的。”“有很多人一个也没漏掉,相信他们一定有窍门,一起看看吧!”……一句句简短的心灵对话,一个个与学生心灵交汇的眼神动作,无不渗透着关爱。
“感人心者,莫先乎情”。有人说,语言的舒展即是思想的流畅,语言的优美源于思想的精致,语言是世界上最美的智慧之花。课堂上,常听到张老师不失时机的赞美:“非常善于联想!”“很不错!”“哎呀,真了不起!”“太棒了!”不经意的一句评价语,一句鼓励话,他娓娓道来,或幽默、或诙谐、或深情、或睿智,总能将学生的学习情绪调适到最佳状态,使之产生自主学习的积极心理倾向。他那流转自如的教学语言,亦诗亦歌亦画的教学韵味,用渲染创设美好的意境,用真情激起心灵的震撼,用启迪拨开重重的迷惑,用诱导触发深远的思考,使课堂时时弥漫着与生命萌发相通的浓郁的人文气息。他用真情言说引发学生的真知灼见,他用自信从容催发学生的创新火花,他用诗情解读引领学生走向数学学习的美妙境界,课堂上时时有“倾听幼竹拔节声”的情景图。这种独特而富有魅力的课堂评价,诠释着师生新角色,灵动演绎着课堂。分享他的课堂,我们分明感到在教育生命的跋涉中,智慧如芬芳的野花,在课堂里一路绽放,每踏出坚实的一步,便会看到山花烂漫……
-----该文刊于《中国教育报》2007年6月29日第5版
张齐华教学艺术系列(三)
用情境营造情趣盎然的教学磁场
陈惠芳
张齐华老师善于在数学课堂上设置一些情境,将教育、教学内容镶嵌在一个多姿多彩的生活大背景中。
在认识“长方体”一课中,“长方体的长、宽、高”作为一个知识点,教师一般都直接告诉学生。然而,张齐华老师教学时却创设了这样的问题情景:如果将长方体12条棱擦掉1条,你还能想象出这个长方体的大小吗?如果擦掉2条、3条甚至更多条呢?试一试,看至少留下几条棱,才能确保想象出长方体的大小?当学生在经历尝试、探索、操作、优化等数学活动后不约而同地选择了长、宽、高三条棱时,规定性的数学常识“长、宽、高”在这一刻被“活化”了。张齐华老师认为,像这样的“头脑创造”可以还原数学概念的内在生命力,相对于概念的授受而言,其文化价值更大。这种基于问题研究而设计的有趣的教学情境,由一个问题逐步引发新问题的产生,学生始终围绕问题去研究,从而实现思维的攀升。在这个教学环节中,学生寻找的是途径,感悟的是规律,掌握的是方法而不仅仅是知道了长方体的“长、宽、高”,对后续学习无疑很有价值。
张齐华老师认为,一个真正意义上的情境应该能激发学生乐于参与、关注和活动的“情”,并引导学生浸润于探索、思维和发现之“境”,它固然需要以具体的场景作背景、载体,然而,场景的呈现能否有效唤起学生的认识不平衡感、问题意识以及认知冲突,场景本身是否能吸引学生主动参与到问题的探究、思考中来等问题还都有待进一步探索。
 基于这样的数学思考,执教“分数的初步认识”一课时,张老师出示了自己1周岁时直立的照片。他让学生猜照片上的孩子是谁?一位学生激动地说:“我觉得是张老师。”
【教学智慧彰显在细节中?——张齐华教学案例集】师:真有眼力!这是1周岁时的我。仔细观察。(动画演示:身高约是头高的4倍)
师:发现了吗,1周岁婴儿,头的高度约是身高的几分之一?
生:1/4。
师:长大后,情况又会怎样呢?
教师出示现在自己的直立照片,并动画演示:头高约是身高的1/7。
师:现在,头的高度约是身高的几分之一?
生:1/7。
师:其实,不同的年龄阶段,相应的分数也不一样。同学们今年10岁左右,那么,一个10岁左右的儿童,他的头高又约是身高的几分之一呢?想知道吗?
生:(激动地)想!
教师随即邀请一个学生上台,其他同学一起现场估计。
学生有猜头的高度约是身高的1/5,有的认为是1/6,有的说比较接近1/7。张老师告诉大家:估计时出现误差很正常。至于10岁左右儿童头的高度究竟大约是身高的几分之一呢,课后同学们不妨去查一查资料。那位学生回到了座位上,其余孩子仍兴趣盎然,面露喜色。
我想此时由一张照片创设猜想分数的教学情境,其“醉翁之意不在酒”。题材的新颖、活泼且不说,关键是学生在看一看、比一比、估一估等一系列的操作活动中加深了对分数的认识。这一引入,有机拓展了学生的认识视野,使他们真切感受到分数在日常生活中的广泛应用,切实体验到学习分数的价值。
在“因数与倍数”新课导入部分,张老师创设了操作情境,巧用模型来建构知识,揭示概念内涵;“交换律”课始又创设了故事情境,为新课学习搭建思考平台;“简单统计”中,创设让学生现场调查的情境,增进学生对统计方法及价值的理解;教学“认识整万数”时,又从拨数游戏开始,在拨数过程中,唤起了学生对计数器、计数单位、数位等相关经验的回忆。
诚然,新课改背景下如何创设有效的教学情境一直是大家关注的热点,而在张老师的数学课堂中,不管是赏心悦目、富有情趣的童话故事,还是新颖别致、妙趣横生的操作情境,每节课的设计都基于学生不同的文化背景和生活经历,努力挖掘生活实际中可能出现的新鲜的活动内容,以情境为亮点,以情感为纽带,以思维为核心,以生活世界为源泉,将数学知识融入到广阔的生活背景下,融入到生命成长的舞台里。
张老师在创设教学情境时,已打通了学科课堂的堡垒,以各学科的整合来制造课堂的热能效应,拓展了学习活动的外延,将学习活动立体化,学生在习得知识的同时,积累文化,积淀人文精神。他以问题带动和砥砺学生思辨的深入,以课堂上师生对话实现智慧的碰撞和经验的共享,以师生之间、生生之间的有效互动,或唤起认同,或触动联想,或引导猜测,或激发疑虑……从而使学生对于知识的认识趋于丰富、完整、准确和深刻,以此来打造充满活力、情趣盎然的教学磁场。
------该文已经发表于《中国教育报》2007年7月6日第6版
张齐华教学艺术系列(四)
一路诗意地追寻数学文化
陈惠芳
提起张齐华,便不能不提到数学文化。
张齐华常常思考,数学究竟能否从根本上改变一个人,使其变得更有力量和精神涵养?数学学习,对于学生的生命和精神成长能给予怎样的影响和润泽。于是,他把教学看作生命中的一部分,课堂上,为孩子搭建了一个个展示自我的舞台,动手折折、剪剪、拼拼,小组说说、议议,让孩子在体验的过程中去经历审美、想象,去感悟数学的自然美。这样的师生交往意味着对话,意味着参与,意味着心态的开放,个性的张显,教学过程变成了一种分享理解的过程,课堂里时时闪动着师生生命的灵光。
在“圆的认识”一课,他借助大自然中美妙的水纹、向日葵、光环、电磁波以及人类社会、生活、文化、艺术领域中美轮美奂的圆的介入,充分展示圆的美丽和内蕴的文化气息。“轴对称图形”一课,又从剪纸中的对称、建筑物中的对称、著名标志中的对称、桂林山水中的对称现象来展示轴对称图形的美妙。或许刚开始理解的数学文化之美,更多依赖数学以外的一些东西,依托媒体的精彩演示,把自然、科学、社会、文化等加以整合,而在“因数和倍数”一课的诸多环节,却折射出张老师对于数学文化的深度思考与文化张力的高度关注。
我们不妨做个镜头回放:师:同学们的想法都很有价值!的确,100以内的自然数中,60不算大,但它的因数却最多。正是60的这一特点,使它在数学和天文学的发展历史上扮演了重要的角色。(出示资料:我们都知道,1小时=60分,1分=60秒。然而,史学家通过考证却发现,时间的进率之所以定为60,是因为“在100以内的自然数中,60的因数最多,共有12个”。据说,这样就可以使许多有关时间的运算变得十分简便。)
师:怎么样,没想到时、分、秒之间的进率定为60竟和我们数学中因数的个数有着密不可分的联系,数学的奇妙有时真是让人难以置信!其实,作为数论的一个小分支,因数和倍数领域中类似美妙的数学现象比比皆是。这里,老师还想给大家介绍一个特别的数,那就是6。想知道为什么吗?
生:想。
师:那就让我们一起来做个小实验吧!第一,写下6所有的因数;第二,除去6本身,将剩下的因数相加。你发现了什么?
生:(惊讶地)结果还是等于6。
师:正因为这样的数很特别,所以数学家们将具有这一特点的数称之为完美数。6就是第一个完美数。千万别小看这些数,因为,它们非常罕见。想知道第二个完美数是多少吗?
生:想!
师:透露一下,比20大,比30小。组内分工合作,看看哪一小组最先找出第二个完美数!学生分组合作,很快,几个小组都找出了第二个完美数28,兴奋之情溢于言表。
师:其实,人们对于数探索的兴趣是永无止境的,找到了第二个完美数,人们就开始寻找第三个、第四个……就这样,一个又一个新的完美数被不断发现。这时,课件配乐依次呈现:496,8128,33550336,8589869056……
不难发现,在引领孩子寻找“完美数”的过程中,完美数之少,凸显数学家求索之路的艰辛,这无疑是对数学精神的引领。接着,在古罗马建筑宏伟壮丽中,张老师告诉孩子,这座建筑之所以历经千年沧桑,因为里面隐藏着倍数和因数的秘密。伴随着一首首优美和谐的旋律缓缓流淌,张老师又提醒孩子,音符之间的和谐源自于倍数和因数的关系,这不就是数学的魅力展示吗!可以想像,丰富的数学猜想,希腊建筑、音乐、完美数的神奇美感,孩子们发自内心地体会到了数学的应用价值和神奇力量,在对完美数的惊讶中,为我国古代人民的勤劳智慧兴奋不已时,爱祖国、爱科学、爱数学的种子已悄然萌发,这不正是数学的力量吗?
至此,我还忆起“分数的初步认识”课尾张老师给大家带来那则有趣的广告。男孩冬冬将蛋糕平均分成4份后,却发现一共有8个小伙伴,灵机一动,他从中间横着切了一刀,将蛋糕平均分成8份,正在这时,第9个男孩出现了。怎么办呢?冬冬又将自己分得的一份分成2份,将1份送给了他……小小的一个广告,蕴含着丰富的数学内涵及浓浓的人文关怀,及时关注了学生的情感体验,巩固了分数的认识,还唤醒了学生心灵深处的那份爱心,那份纯真,那份友谊,那份责任。学生不仅仅收获了知识,还收获了一种高尚的品德,一个美好的心灵。这种文化代表着学生对于这个世界的认识和经验,显示着学生特有的价值观、思维方式和行为方式。这也许就是张老师所说的“臻善,享受数学给予的精神力量”吧!
在张齐华老师的讲座《从朴素走向深刻》一文中,我还知道“简单统计”中,如何渗透统计思想;“找规律”中,如何从变中求同,上升为“一一对应”的数学思想;“确定位置”中坐标思想如何落实,尤其是那个不规则图形钢琴背面的面积计算---化曲为直,其间所渗透的微积分思想……
张齐华老师以一种古典、审美的情怀,关注学生数学思考的提升、数学思维方式的培养,关注数学精神品质的有机渗透,不仅丰富了数学文化的内涵,更为今后开展数学文化的理论探索和实践研究,开掘出新的思路,展现新的契机,描摹新的未来。
如今,在他的数学课堂上,我们可以随时随地触觉到数学的源头、数学的历史、数学的精神乃至数学的力量,似乎呈现在我们眼前的不再是一两页薄薄的教材,而是一幅源远流长的数学画卷。数学从表面上看是枯燥无味的,然而却有着一种隐蔽的、深邃的美,一种感性与理***融的美,数学美是数学科学本质力量的感性与理性的呈现,是一种人的本质力量通过人的数学思维结构的呈现,是一种真实意义上的美,是一种彰显人文精神的科学美。
“我喜欢旅行,因为旅行见证着一种姿态,一种不断行走、不断思索的姿态。在数学教育的旅途中,我甘愿做一个行者。“这是张齐华老师的肺腑之言,我深信,对于数学文化,张齐华老师还会添加诸多新的“精神元素”;对于数学教育,在他精心演绎的智慧课堂里,一定会更加充满生命的活力,弥漫诗意的人性光辉,更加灵动与飘逸。
——该文已经发表于《中国教育报》2007年9月14日第6版

    推荐阅读