简介:在实际业务使用中,需要经常实时做一些数据分析,包括实时PV和UV展示,实时销售数据,实时店铺UV以及实时推荐系统等,基于此类需求,Confluent+实时计算Flink版是一个高效的方案。
业务背景
在实际业务使用中,需要经常实时做一些数据分析,包括实时PV和UV展示,实时销售数据,实时店铺UV以及实时推荐系统等,基于此类需求,Confluent+实时计算Flink版是一个高效的方案。
Confluent是基于Apache Kafka提供的企业级全托管流数据服务,由 Apache Kafka 的原始创建者构建,通过企业级功能扩展了 Kafka 的优势,同时消除了 Kafka管理或监控的负担。
实时计算Flink版是阿里云基于 Apache Flink 构建的企业级实时大数据计算商业产品。实时计算 Flink 由 Apache Flink 创始团队官方出品,拥有全球统一商业化品牌,提供全系列产品矩阵,完全兼容开源 Flink API,并充分基于强大的阿里云平台提供云原生的 Flink 商业增值能力。
一、准备工作-创建Confluent集群和实时计算Flink版集群
登录Confluent管理控制台,创建Confluent集群,创建步骤参考 Confluent集群开通
登录实时计算Flink版管理控制台,创建vvp集群。请注意,创建vvp集群选择的vpc跟confluent集群的region和vpc使用同一个,这样可以在vvp内部访问confluent的内部域名。
文章图片
二、最佳实践-实时统计玩家充值金额-Confluent+实时计算Flink+Hologres
2.1 新建Confluent消息队列
在confluent集群列表页,登录control center
文章图片
在左侧选中Topics,点击Add a topic按钮,创建一个名为confluent-vvp-test的topic,将partition设置为3
文章图片
文章图片
2.2 配置结果表 Hologres
进入Hologres控制台,点击Hologres实例,在DB管理中新增数据库mydb
文章图片
登录Hologres数据库,新建SQL
文章图片
Hologres中创建结果表 SQL语句
--用户累计消费结果表
CREATE TABLE consume (
appkey VARCHAR,
serverid VARCHAR,
servertime VARCHAR,
roleid VARCHAR,
amount FLOAT,
dt VARCHAR,
primary key(appkey,dt)
);
2.3 创建实时计算vvp作业
首先登录vvp控制台,选择集群所在region,点击控制台,进入开发界面
文章图片
点击作业开发Tab,点击新建文件,文件名称:confluent-vvp-hologres,文件类型选择:流作业/SQL
文章图片
在输入框写入以下代码:
create TEMPORARY table kafka_game_consume_source(
appkey STRING,
servertime STRING,
consumenum DOUBLE,
roleid STRING,
serverid STRING
) with (
'connector' = 'kafka',
'topic' = 'game_consume_log',
'properties.bootstrap.servers' = 'kafka.confluent.svc.cluster.local.xxx:9071[xxx可以找开发同学查看]',
'properties.group.id' = 'gamegroup',
'format' = 'json',
'properties.ssl.truststore.location' = '/flink/usrlib/truststore.jks',
'properties.ssl.truststore.password' = '[your truststore password]',
'properties.security.protocol'='SASL_SSL',
'properties.sasl.mechanism'='PLAIN',
'properties.sasl.jaas.config'='org.apache.flink.kafka.shaded.org.apache.kafka.common.security.plain.PlainLoginModule required username="xxx[集群的用户]" password="xxx[相应的密码]";
'
);
-- 创建累计消费hologres sink表
CREATE TEMPORARY TABLE consume(
appkey STRING,
serverid STRING,
servertime STRING,
roleid STRING,
amount DOUBLE,
dt STRING,
PRIMARY KEY (appkey,dt) NOT ENFORCED
)WITH (
'connector' = 'hologres',
'dbname' = 'mydb',
'endpoint' = 'hgprecn-cn-tl32gkaet006-cn-beijing-vpc.hologres.aliyuncs.com:80',
'password' = '[your appkey secret]',
'tablename' = 'consume',
'username' = '[your app key]',
'mutateType' = 'insertorreplace'
);
--{"appkey":"appkey1","servertime":"2020-09-30 14:10:36","consumenum":33.8,"roleid":"roleid1","serverid":"1"}
--{"appkey":"appkey2","servertime":"2020-09-30 14:11:36","consumenum":30.8,"roleid":"roleid2","serverid":"2"}
--{"appkey":"appkey1","servertime":"2020-09-30 14:13:36","consumenum":31.8,"roleid":"roleid1","serverid":"1"}
--{"appkey":"appkey2","servertime":"2020-09-30 14:20:36","consumenum":33.8,"roleid":"roleid2","serverid":"2"}
--{"appkey":"appkey1","servertime":"2020-09-30 14:30:36","consumenum":73.8,"roleid":"roleid1","serverid":"1"}
-- 计算每个用户累积消费金额
insert into consume
SELECT
appkey,LAST_VALUE(serverid) as serverid,LAST_VALUE(servertime) as servertime,LAST_VALUE(roleid) as roleid,
sum(consumenum) as amount,
substring(servertime,1,10) as dt
FROM kafka_game_consume_source
GROUP BY appkey,substring(servertime,1,10)
having sum(consumenum) > 0;
在高级配置里,增加依赖文件truststore.jks(访问内部域名得添加这个文件,访问公网域名可以不用),访问依赖文件的固定路径前缀都是/flink/usrlib/(这里就是/flink/usrlib/truststore.jks)
文章图片
点击上线按钮,完成上线
文章图片
在运维作用列表里找到刚上线的作用,点击启动按钮,等待状态更新为running,运行成功。
文章图片
在control center的【Topics->Messages】页面,逐条发送测试消息,格式为:
{"appkey":"appkey1","servertime":"2020-09-30 14:10:36","consumenum":33.8,"roleid":"roleid1","serverid":"1"}
{"appkey":"appkey2","servertime":"2020-09-30 14:11:36","consumenum":30.8,"roleid":"roleid2","serverid":"2"}
{"appkey":"appkey1","servertime":"2020-09-30 14:13:36","consumenum":31.8,"roleid":"roleid1","serverid":"1"}
{"appkey":"appkey2","servertime":"2020-09-30 14:20:36","consumenum":33.8,"roleid":"roleid2","serverid":"2"}
{"appkey":"appkey1","servertime":"2020-09-30 14:30:36","consumenum":73.8,"roleid":"roleid1","serverid":"1"}
2.4 查看用户充值金额实时统计效果
文章图片
文章图片
三、最佳实践-电商实时PV和UV统计-Confluent+实时计算Flink+RDS
3.1 新建Confluent消息队列
在confluent集群列表页,登录control center
文章图片
在左侧选中Topics,点击Add a topic按钮,创建一个名为pv-uv的topic,将partition设置为3
文章图片
文章图片
3.2 创建云数据库RDS结果表
登录 RDS 管理控制台页面,购买RDS。确保RDS与Flink全托管集群在相同region,相同VPC下
文章图片
添加虚拟交换机网段(vswitch IP段)进入RDS白名单,详情参考:设置白名单文档
【基于Confluent+Flink的实时数据分析最佳实践】
文章图片
文章图片
【vswitch IP段】可在 flink的工作空间详情中查询
文章图片
在【账号管理】页面创建账号【高权限账号】
文章图片
文章图片
数据库实例下【数据库管理】新建数据库【conflufent_vvp】
文章图片
使用系统自带的DMS服务登陆RDS,登录名和密码输入上面创建的高权限账户
文章图片
文章图片
双击【confluent_vvp】数据库,打开SQLConsole,将以下建表语句复制粘贴到 SQLConsole中,创建结果表
CREATE TABLE result_cps_total_summary_pvuv_min(
summary_date date NOT NULL COMMENT '统计日期',
summary_min varchar(255) COMMENT '统计分钟',
pv bigint COMMENT 'pv',
uv bigint COMMENT 'uv',
currenttime timestamp COMMENT '当前时间',
primary key(summary_date,summary_min)
)
文章图片
3.3 创建实时计算VVP作业
1.【[VVP控制台】新建文件
文章图片
在SQL区域输入以下代码:
--数据的订单源表
CREATE TABLE source_ods_fact_log_track_action (
account_id VARCHAR,
--用户ID
client_ip VARCHAR,
--客户端IP
client_info VARCHAR,
--设备机型信息
platform VARCHAR,
--系统版本信息
imei VARCHAR,
--设备唯一标识
`version` VARCHAR,
--版本号
`action` VARCHAR,
--页面跳转描述
gpm VARCHAR,
--埋点链路
c_time VARCHAR,
--请求时间
target_type VARCHAR,
--目标类型
target_id VARCHAR,
--目标ID
udata VARCHAR,
--扩展信息,JSON格式
session_id VARCHAR,
--会话ID
product_id_chain VARCHAR,
--商品ID串
cart_product_id_chain VARCHAR,
--加购商品ID
tag VARCHAR,
--特殊标记
`position` VARCHAR,
--位置信息
network VARCHAR,
--网络使用情况
p_dt VARCHAR,
--时间分区天
p_platform VARCHAR --系统版本信息
) WITH (
'connector' = 'kafka',
'topic' = 'game_consume_log',
'properties.bootstrap.servers' = 'kafka.confluent.svc.cluster.local.c79f69095bc5d4d98b01136fe43e31b93:9071',
'properties.group.id' = 'gamegroup',
'format' = 'json',
'properties.ssl.truststore.location' = '/flink/usrlib/truststore.jks',
'properties.ssl.truststore.password' = '【your password】',
'properties.security.protocol'='SASL_SSL',
'properties.sasl.mechanism'='PLAIN',
'properties.sasl.jaas.config'='org.apache.flink.kafka.shaded.org.apache.kafka.common.security.plain.PlainLoginModule required username="【your user name】" password="【your password】";
'
);
--{"account_id":"id1","client_ip":"172.11.1.1","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:10:00"}
CREATE TABLE result_cps_total_summary_pvuv_min (
summary_date date,
--统计日期
summary_min varchar,
--统计分钟
pv bigint,
--点击量
uv bigint,
--一天内同个访客多次访问仅计算一个UV
currenttime timestamp,
--当前时间
primary key (summary_date, summary_min)
) WITH (
type = 'rds',
url = 'url = 'jdbc:mysql://rm-【your rds clusterId】.mysql.rds.aliyuncs.com:3306/confluent_vvp',',
tableName = 'result_cps_total_summary_pvuv_min',
userName = 'flink_confluent_vip',
password = '【your rds password】'
);
CREATE VIEW result_cps_total_summary_pvuv_min_01 AS
select
cast (p_dt as date) as summary_date --时间分区
, count (client_ip) as pv --客户端的IP
, count (distinct client_ip) as uv --客户端去重
, cast (max (c_time) as TIMESTAMP) as c_time --请求的时间
from
source_ods_fact_log_track_action
group
by p_dt;
INSERT
into result_cps_total_summary_pvuv_min
select
a.summary_date,
--时间分区
cast (DATE_FORMAT (c_time, 'HH:mm') as varchar) as summary_min,
--取出小时分钟级别的时间
a.pv,
a.uv,
CURRENT_TIMESTAMP as currenttime --当前时间
from
result_cps_total_summary_pvuv_min_01 AS a;
点击【上线】之后,在作业运维页面点击启动按钮,直到状态更新为RUNNING状态。
文章图片
在control center的【Topics->Messages】页面,逐条发送测试消息,格式为:
{"account_id":"id1","client_ip":"72.11.1.111","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:11:00"}
{"account_id":"id2","client_ip":"72.11.1.112","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:12:00"}
{"account_id":"id3","client_ip":"72.11.1.113","client_info":"mi10","p_dt":"2021-12-01","c_time":"2021-12-01 19:13:00"}
文章图片
3.4 查看PV和UV效果
可以看出rds数据表的pv和uv会随着发送的消息数据,动态的变化,同时还可以通过【数据可视化】来查看相应的图表信息。
文章图片
pv图表展示:
文章图片
uv图表展示:
文章图片
原文链接
本文为阿里云原创内容,未经允许不得转载。
推荐阅读
- 操作系统|第三课(Linux基础)
- Python|为什么学完Python后的薪资这么高()
- 如何远程管理天翼云RDS数据库
- 数据库|服务器项目部署(一)
- JavaSE|MySQL 数据库约束、聚合查询、多表查询
- DB TALK首期技术分享会重磅来袭!与您共探《数据库管理与运维》之美
- Java|第1节 MySQL 架构篇 2021-12-24
- #|ClickHouse基础
- MySQL数据库实战笔记+理论|MySQL数据库的概述,很简单