深层剖析鸿蒙轻内核M核的动态内存如何支持多段非连续性内存
摘要:鸿蒙轻内核M核新增支持了多段非连续性内存区域,把多个非连续性内存逻辑上合一,用户不感知底层的不同内存块。本文分享自华为云社区《鸿蒙轻内核M核源码分析系列九 动态内存Dynamic Memory 补充》,作者:zhushy。
一些芯片片内RAM大小无法满足要求,需要使用片外物理内存进行扩充。对于多段非连续性内存,需要内存管理模块统一管理,应用使用内存接口时不需要关注内存分配属于哪块物理内存,不感知多块内存。
多段非连续性内存如下图所示:
文章图片
鸿蒙轻内核M核新增支持了多段非连续性内存区域,把多个非连续性内存逻辑上合一,用户不感知底层的不同内存块。本文来分析下动态内存模块的支持多段非连续内存的源码,帮助读者掌握其使用。本文中所涉及的源码,以OpenHarmony LiteOS-M内核为例,均可以在开源站点https://gitee.com/openharmony... 获取。接下来,我们看下新增的结构体、宏和对外接口的源代码。
1、结构体定义和常用宏定义 在文件kernel/include/los_memory.h中新增了结构体LosMemRegion用于维护多个非连续的内存区域,包含各个内存区域的开始地址和大小。如下:
typedef struct {
VOID *startAddress;
/* 内存区域的开始地址 */
UINT32 length;
/* 内存区域的长度 */
} LosMemRegion;
需要注意这个结构体的定义需要开启宏LOSCFG_MEM_MUL_REGIONS的情况下才生效,这个宏也是支持非连续内存区域的配置宏,定义在文件kernel/include/los_config.h中。
我们继续看下新增的几个宏函数,定义在文件kernel/src/mm/los_memory.c,代码下下文:
注释讲的比较明白,当开启LOSCFG_MEM_MUL_REGIONS支持非连续内存特性时,会把两个不连续内存区域之间的间隔Gap区域标记为虚拟的已使用内存节点。这个节点当然不能被释放,在内存调测特性中也不能被统计。因为我们只是把它视为已使用内存节点,但其实不是。在动态内存算法中每个内存节点都维护一个指向前序节点的指针,对于虚拟已使用节点,我们把该指针设置为魔术字,来标记它是个内存区域的间隔部分。
⑴处定义了一个魔术字OS_MEM_GAP_NODE_MAGIC,用于表示两个不连续内存区域之前的间隔Gap区域。⑵和⑶处定义2个宏,分别用于设置魔术字,验证魔术字。
#if (LOSCFG_MEM_MUL_REGIONS == 1)
/**
*When LOSCFG_MEM_MUL_REGIONS is enabled to support multiple non-continuous memory regions, the gap between two memory regions
*is marked as a used OsMemNodeHead node. The gap node could not be freed, and would also be skipped in some DFX functions. The
*'ptr.prev' pointer of this node is set to OS_MEM_GAP_NODE_MAGIC to identify that this is a gap node.
*/
⑴#define OS_MEM_GAP_NODE_MAGIC0xDCBAABCD
⑵#define OS_MEM_MARK_GAP_NODE(node)(((struct OsMemNodeHead *)(node))->ptr.prev = (struct OsMemNodeHead *)OS_MEM_GAP_NODE_MAGIC)
⑶#define OS_MEM_IS_GAP_NODE(node)(((struct OsMemNodeHead *)(node))->ptr.prev == (struct OsMemNodeHead *)OS_MEM_GAP_NODE_MAGIC)
#else
⑵#define OS_MEM_MARK_GAP_NODE(node)
⑶#define OS_MEM_IS_GAP_NODE(node)FALSE
#endif
2、动态内存常用操作 本节我们一起分析下非连续性内存的实现算法,及接口实现代码。首先通过示意图了解下算法:
文章图片
集合示意图,我们了解下非连续性内存合并为一个内存池的步骤:
1、把多段内存区域的第一块内存区域调用LOS_MemInit进行初始化
2、获取下一个内存区域的开始地址和长度,计算该内存区域和上一块内存区域的间隔大小gapSize。
3、把内存块间隔部分视为虚拟的已使用节点,使用上一内存块的尾节点,设置其大小为gapSize+ OS_MEM_NODE_HEAD_SIZE。
4、把当前内存区域划分为一个空闲内存块和一个尾节点,把空闲内存块插入到空闲链表。并设置各个节点的前后链接关系。
5、有更多的非连续内存块,重复上述步骤2-4。
2.1 新增接口LOS_MemRegionsAdd
新增的接口的接口说明文档见下文,注释比较详细,总结如下:
- LOSCFG_MEM_MUL_REGIONS=0:
- LOSCFG_MEM_MUL_REGIONS=1:
LOS_MemRegionsAdd(VOID pool, const LosMemRegion const multipleMemRegions)进行内存池合一:
- 如果pool为空,则合并到主内存堆m_aucSysMem0。
- 如果不为空,则初始化一个新的内存池,合并多内存区域为一个从堆。
/**
* @ingroup los_memory
* @brief Initialize multiple non-continuous memory regions.
*
* @par Description:
*
* - This API is used to initialize multiple non-continuous memory regions. If the starting address of a pool is specified,
*the memory regions will be linked to the pool as free nodes. Otherwise, the first memory region will be initialized as a
*new pool, and the rest regions will be linked as free nodes to the new pool.
*
*
* @attention
*
* - If the starting address of a memory pool is specified, the start address of the non-continuous memory regions should be
*greater than the end address of the memory pool.
* - The multiple non-continuous memory regions shouldn't conflict with each other.
*
*
* @param pool[IN] The memory pool address. If NULL is specified, the start address of first memory region will be
*initialized as the memory pool address. If not NULL, it should be a valid address of a memory pool.
* @param memRegions[IN] The LosMemRegion array that contains multiple non-continuous memory regions. The start address
*of the memory regions are placed in ascending order.
* @param memRegionCount [IN] The count of non-continuous memory regions, and it should be the length of the LosMemRegion array.
*
* @retval #LOS_NOKThe multiple non-continuous memory regions fails to be initialized.
* @retval #LOS_OKThe multiple non-continuous memory regions is initialized successfully.
* @par Dependency:
*
* - los_memory.h: the header file that contains the API declaration.
*
* @see None.
*/
extern UINT32 LOS_MemRegionsAdd(VOID *pool, const LosMemRegion * const memRegions, UINT32 memRegionCount);
2.2 新增接口LOS_MemRegionsAdd实现
结合上文示意图,加上注释,实现比较清晰,直接阅读下代码即可。
#if (LOSCFG_MEM_MUL_REGIONS == 1)
STATIC INLINE UINT32 OsMemMulRegionsParamCheck(VOID *pool, const LosMemRegion * const memRegions, UINT32 memRegionCount)
{
const LosMemRegion *memRegion = NULL;
VOID *lastStartAddress = NULL;
VOID *curStartAddress = NULL;
UINT32 lastLength;
UINT32 curLength;
UINT32 regionCount;
if ((pool != NULL) && (((struct OsMemPoolHead *)pool)->info.pool != pool)) {
PRINT_ERR("wrong mem pool addr: %p, func: %s, line: %d\n", pool, __FUNCTION__, __LINE__);
return LOS_NOK;
}if (pool != NULL) {
lastStartAddress = pool;
lastLength = ((struct OsMemPoolHead *)pool)->info.totalSize;
}memRegion = memRegions;
regionCount = 0;
while (regionCount < memRegionCount) {
curStartAddress = memRegion->startAddress;
curLength = memRegion->length;
if ((curStartAddress == NULL) || (curLength == 0)) {
PRINT_ERR("Memory address or length configured wrongly:address:0x%x, the length:0x%x\n", (UINTPTR)curStartAddress, curLength);
return LOS_NOK;
}
if (((UINTPTR)curStartAddress & (OS_MEM_ALIGN_SIZE - 1)) || (curLength & (OS_MEM_ALIGN_SIZE - 1))) {
PRINT_ERR("Memory address or length configured not aligned:address:0x%x, the length:0x%x, alignsize:%d\n", \
(UINTPTR)curStartAddress, curLength, OS_MEM_ALIGN_SIZE);
return LOS_NOK;
}
if ((lastStartAddress != NULL) && (((UINT8 *)lastStartAddress + lastLength) >= (UINT8 *)curStartAddress)) {
PRINT_ERR("Memory regions overlapped, the last start address:0x%x, the length:0x%x, the current start address:0x%x\n", \
(UINTPTR)lastStartAddress, lastLength, (UINTPTR)curStartAddress);
return LOS_NOK;
}
memRegion++;
regionCount++;
lastStartAddress = curStartAddress;
lastLength = curLength;
}
return LOS_OK;
}STATIC INLINE VOID OsMemMulRegionsLink(struct OsMemPoolHead *poolHead, VOID *lastStartAddress, UINT32 lastLength, struct OsMemNodeHead *lastEndNode, const LosMemRegion *memRegion)
{
UINT32 curLength;
UINT32 gapSize;
struct OsMemNodeHead *curEndNode = NULL;
struct OsMemNodeHead *curFreeNode = NULL;
VOID *curStartAddress = NULL;
curStartAddress = memRegion->startAddress;
curLength = memRegion->length;
// mark the gap between two regions as one used node
gapSize = (UINT8 *)(curStartAddress) - ((UINT8 *)(lastStartAddress) + lastLength);
lastEndNode->sizeAndFlag = gapSize + OS_MEM_NODE_HEAD_SIZE;
OS_MEM_SET_MAGIC(lastEndNode);
OS_MEM_NODE_SET_USED_FLAG(lastEndNode->sizeAndFlag);
// mark the gap node with magic number
OS_MEM_MARK_GAP_NODE(lastEndNode);
poolHead->info.totalSize += (curLength + gapSize);
poolHead->info.totalGapSize += gapSize;
curFreeNode = (struct OsMemNodeHead *)curStartAddress;
curFreeNode->sizeAndFlag = curLength - OS_MEM_NODE_HEAD_SIZE;
curFreeNode->ptr.prev = lastEndNode;
OS_MEM_SET_MAGIC(curFreeNode);
OsMemFreeNodeAdd(poolHead, (struct OsMemFreeNodeHead *)curFreeNode);
curEndNode = OS_MEM_END_NODE(curStartAddress, curLength);
curEndNode->sizeAndFlag = 0;
curEndNode->ptr.prev = curFreeNode;
OS_MEM_SET_MAGIC(curEndNode);
OS_MEM_NODE_SET_USED_FLAG(curEndNode->sizeAndFlag);
#if (LOSCFG_MEM_WATERLINE == 1)
poolHead->info.curUsedSize += OS_MEM_NODE_HEAD_SIZE;
poolHead->info.waterLine = poolHead->info.curUsedSize;
#endif
}UINT32 LOS_MemRegionsAdd(VOID *pool, const LosMemRegion *const memRegions, UINT32 memRegionCount)
{
UINT32 ret;
UINT32 lastLength;
UINT32 curLength;
UINT32 regionCount;
struct OsMemPoolHead *poolHead = NULL;
struct OsMemNodeHead *lastEndNode = NULL;
struct OsMemNodeHead *firstFreeNode = NULL;
const LosMemRegion *memRegion = NULL;
VOID *lastStartAddress = NULL;
VOID *curStartAddress = NULL;
ret = OsMemMulRegionsParamCheck(pool, memRegions, memRegionCount);
if (ret != LOS_OK) {
return ret;
}memRegion = memRegions;
regionCount = 0;
if (pool != NULL) { // add the memory regions to the specified memory pool
poolHead = (struct OsMemPoolHead *)pool;
lastStartAddress = pool;
lastLength = poolHead->info.totalSize;
} else { // initialize the memory pool with the first memory region
lastStartAddress = memRegion->startAddress;
lastLength = memRegion->length;
poolHead = (struct OsMemPoolHead *)lastStartAddress;
ret = LOS_MemInit(lastStartAddress, lastLength);
if (ret != LOS_OK) {
return ret;
}
memRegion++;
regionCount++;
}firstFreeNode = OS_MEM_FIRST_NODE(lastStartAddress);
lastEndNode = OS_MEM_END_NODE(lastStartAddress, lastLength);
while (regionCount < memRegionCount) { // traverse the rest memory regions, and initialize them as free nodes and link together
curStartAddress = memRegion->startAddress;
curLength = memRegion->length;
OsMemMulRegionsLink(poolHead, lastStartAddress, lastLength, lastEndNode, memRegion);
lastStartAddress = curStartAddress;
lastLength = curLength;
lastEndNode = OS_MEM_END_NODE(curStartAddress, curLength);
memRegion++;
regionCount++;
}firstFreeNode->ptr.prev = lastEndNode;
return ret;
}
#endif
小结 【深层剖析鸿蒙轻内核M核的动态内存如何支持多段非连续性内存】本文带领大家一起剖析了鸿蒙轻内核M核的动态内存如何支持多段非连续性内存,包含结构体、运作示意图、新增接口等等。感谢阅读,如有任何问题、建议,都可以留言评论,谢谢。
更多学习内容,请点击关注IoT物联网社区,添加华为云IoT小助手微信号(hwc-iot),获取更多资讯
点击关注,第一时间了解华为云新鲜技术~
推荐阅读
- Spring|Spring 框架之 AOP 原理剖析已经出炉!!!预定的童鞋可以识别下发二维码去看了
- C语言学习(bit)|16.C语言进阶——深度剖析数据在内存中的存储
- 向儿子学习“非暴力”沟通——暴力沟通的四个深层原因
- Java并发编程|Java并发编程 - 深入剖析ReentrantLock之非公平锁加锁流程(第1篇)
- 全面深度剖析(如何找到一份有意义的工作())
- 知止
- 华为王成录(鸿蒙系统将超越安卓和IOS,2021年装机量将达3到4亿)
- boostrap轮播图实现剖析
- 用深层神经网络解释大脑的运作
- 从JDK源码级别彻底剖析JVM类加载机制