2.Java中一个简单的机器学习例子
这是一个“Hello World”Java机器学习的例子。 它只是给你一个Java的机器学习的味道。
环境
Java 1.6+ and Eclipse
第一步 下载 Weka 库
下载地址:: http://www.cs.waikato.ac.nz/ml/weka/snapshots/weka_snapshots.html
下载stable.XX.zip,解压缩文件,在Eclipse中将weka.jar添加到Java项目的库路径中。
第二步 准备数据
按照以下格式创建一个txt文件“weather.txt”:
@relation weather@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}@data
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE,no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no
这个数据集来自weka下载包。 它位于“/data/weather.numeric.arff”。 文件扩展名是“arff”,但我们可以简单地使用“txt”。
第3步:使用Weka进行培训和测试 此代码示例使用Weka提供的一组分类器。 它在给定数据集上训练模型,并使用10分裂交叉验证进行测试。 以后我会解释每个分类器,因为这是一个更复杂的主题。
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.evaluation.NominalPrediction;
import weka.classifiers.rules.DecisionTable;
import weka.classifiers.rules.PART;
import weka.classifiers.trees.DecisionStump;
import weka.classifiers.trees.J48;
import weka.core.FastVector;
import weka.core.Instances;
public class WekaTest {
public static BufferedReader readDataFile(String filename) {
BufferedReader inputReader = null;
try {
inputReader = new BufferedReader(new FileReader(filename));
} catch (FileNotFoundException ex) {
System.err.println("File not found: " + filename);
}
return inputReader;
}
public static Evaluation classify(Classifier model,
Instances trainingSet, Instances testingSet) throws Exception {
Evaluation evaluation = new Evaluation(trainingSet);
model.buildClassifier(trainingSet);
evaluation.evaluateModel(model, testingSet);
return evaluation;
}
public static double calculateAccuracy(FastVector predictions) {
double correct = 0;
for (int i = 0;
i < predictions.size();
i++) {
NominalPrediction np = (NominalPrediction) predictions.elementAt(i);
if (np.predicted() == np.actual()) {
correct++;
}
}
return 100 * correct / predictions.size();
}
public static Instances[][] crossValidationSplit(Instances data, int numberOfFolds) {
Instances[][] split = new Instances[2][numberOfFolds];
for (int i = 0;
i < numberOfFolds;
i++) {
split[0][i] = data.trainCV(numberOfFolds, i);
split[1][i] = data.testCV(numberOfFolds, i);
}
return split;
}
public static void main(String[] args) throws Exception {
BufferedReader datafile = readDataFile("weather.txt");
Instances data = https://www.it610.com/article/new Instances(datafile);
data.setClassIndex(data.numAttributes() - 1);
// Do 10-split cross validation
Instances[][] split = crossValidationSplit(data, 10);
// Separate split into training and testing arrays
Instances[] trainingSplits = split[0];
Instances[] testingSplits = split[1];
// Use a set of classifiers
Classifier[] models = {
new J48(), // a decision tree
new PART(),
new DecisionTable(),//decision table majority classifier
new DecisionStump() //one-level decision tree
};
// Run for each model
for (int j = 0;
j < models.length;
j++) {
// Collect every group of predictions for current model in a FastVector
FastVector predictions = new FastVector();
// For each training-testing split pair, train and test the classifier
for (int i = 0;
i < trainingSplits.length;
i++) {
Evaluation validation = classify(models[j], trainingSplits[i], testingSplits[i]);
predictions.appendElements(validation.predictions());
// Uncomment to see the summary for each training-testing pair.
//System.out.println(models[j].toString());
}
// Calculate overall accuracy of current classifier on all splits
double accuracy = calculateAccuracy(predictions);
// Print current classifier's name and accuracy in a complicated,
// but nice-looking way.
System.out.println("Accuracy of " + models[j].getClass().getSimpleName() + ": "
+ String.format("%.2f%%", accuracy)
+ "\n---------------------------------");
}
}
}
您的项目的包视图应该如下所示:
文章图片
包示意图 【2.Java中一个简单的机器学习例子】参考文献:
- http://www.cs.umb.edu/~ding/history/480_697_spring_2013/homework/WekaJavaAPITutorial.pdf
- http://www.cs.ru.nl/P.Lucas/teaching/DM/weka.pdf
推荐阅读
- 热闹中的孤独
- 一个人的旅行,三亚
- 一个小故事,我的思考。
- 一个人的碎碎念
- Shell-Bash变量与运算符
- JS中的各种宽高度定义及其应用
- 七年之痒之后
- 我从来不做坏事
- 2021-02-17|2021-02-17 小儿按摩膻中穴-舒缓咳嗽
- 深入理解Go之generate