高中数学知识点总结及公式大全图片 高中数学知识点总结及公式大全


高中数学知识点总结及公式大全图片 高中数学知识点总结及公式大全

文章插图
1、常用数学公式表
(1)乘法与因式分解
a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2) 。
(2)三角不等式
|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a| 。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a 。
(4)根与系数的关系:X1+X2=-b/aX1*X2=c/a,注:韦达定理 。
(5)判别式
1)b2-4a=0,注:方程有相等的两实根 。
2)b2-4ac>0 , 注:方程有一个实根 。
3)b2-4ac<0 , 注:方程有共轭复数根 。
2、三角函数公式
(1)两角和公式
sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 。
(2)倍角公式
tan2A=2tanA/(1-tan2A);ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 。
(3)半角公式
sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2);cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2);tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA));ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA)) 。
(4)和差化积公式
2sinAcosB=sin(A+B)+sin(A-B);2cosAsinB=sin(A+B)-sin(A-B);2cosAcosB=cos(A+B)-sin(A-B);-2sinAsinB=cos(A+B)-cos(A-B);sinA+sinB=2sin((A+B)/2)cos((A-B)/2;cosA+cosB=2cos((A+B)/2)sin((A-B)/2);tanA+tanB=sin(A+B)/cosAcosB;tanA-tanB=sin(A-B)/cosAcosB;ctgA+ctgBsin(A+B)/sinAsinB;-ctgA+ctgBsin(A+B)/sinAsinB
(5)某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+;n(n+1)=n(n+1)(n+2)/3 。
(6)正弦定理:a/sinA=b/sinB=c/sinC=2R,注:其中R表示三角形的外接圆半径 。
(7)余弦定理:b2=a2+c2-2accosB,注:角B是边a和边c的夹角 。
3、高中文科数学知识点口诀记忆
(1)《集合》
1)集合概念不定义,属性相同来相聚;内有子交并补集,运算结果是集合 。
2)集合元素三特征,互异无序确定性;集合元素尽相同,两个集合才相等 。
3)书写规范符号化 , 表示列举描述法;描述法中花括号,对象xy须看清 。
4)数集点集须留意 , 点集本是实数对;元素集合讲属于,集合之间谈包含 。
5)0和空集不相同 , 正确区分才成功;运算如果有难处 , 文氏数轴来相助 。
(2)《常用逻辑用语》
1)真假能判是命题,条件结论很清晰;命题形式有四种,分成两双同真假 。
2)若p则q真命题,p和q充分条件;q是p必要条件,原逆皆真称充要 。
3)判断条件有三法,举出反例定义法;;由小推大集合法,逆否命题等价法 。
4)逻辑连词或且非,或命题一真即真;且命题一假即假 , 非命题真假相反 。
5)且命题的否定式,否定式的或命题;或命题的否定式 , 否定式的且命题 。
6)量词一般有两个,全称量词所有的;存在量词有一个,全称特称两命题 。
6)全称命题否定式 , 特称命题肯定式;含有量词否定式 , 改写量词否结论 。
(3)《函数概念》
1)函数结构三要素 , 值域法则定义域;函数形式有三法,列表图像解析法 。
2)特殊函数有三种,分段组合和复合;定义域的要求多 , 分式分母不为0 。
3)偶次方根须非负 , 0的次方要为正;底数非1为正数,零和负数无对数 。
4)正切函数脚不直,数列序号正整数;多个函数求交集,实际意义须满足 。
5)函数值域的求法 , 配方图像定义法;部分整体观察法,换元代入单调法 。
6)分离常数判别式,均值定理不等法;怎样去求解析式,题目常考两性式 。
7)抽象函数解析式,代入换元配凑法,方程思想消元法;指定类型解析式,
8)运用待定系数法 。性质奇偶用单调,观察图像最美妙;若要详细证明它,
9)还须将那定义抓 。组合函数单调性 , 判断它们有法则,增加上增等于增,
10)增减去减等于增,减加上减等于减 , 减减去增等于减 。复合函数单调性,
11)同增异减巧判断 。复合函数奇偶性,偶加减偶等于偶,奇加减奇等于奇 。

推荐阅读