E(X) = λ, Var(X) = λ
泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?
让我们考虑这个平均每天发生2起事故的例子 。泊松分布的实现和二项分布有些类似 , 在泊松分布中我们需要指定比率参数 。泊松分布的输出是一个数列,包含了发生0次、1次、2次 , 直到10次事故的概率 。我用结果生成了以下图片 。
你可以看到,事故次数的峰值在均值附近 。平均来说 , 你可以预计事件发生的次数为λ 。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的 。
现在我来模拟1000个服从泊松分布的随机变量 。
正态分布(Normal Distribution)
正态分布是一种连续分布,其函数可以在实线上的任何地方取值 。正态分布由两个参数描述:分布的平均值μ和方差σ2。
E(X) = μ, Var(X) = σ2
正态分布的取值可以从负无穷到正无穷 。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数 。
β分布(Beta Distribution)
β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画 。
β分布的形状取决于α和β的值 。贝叶斯分析中大量使用了β分布 。
当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution) 。尝试不同的α和β取值 , 看看分布的形状是如何变化的 。
指数分布(Exponential Distribution)
指数分布是一种连续概率分布 , 用于表示独立随机事件发生的时间间隔 。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等 。
我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$。
接着,我在指数分布下模拟1000个随机变量 。scale参数表示λ的倒数 。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值 。
结语(Conclusion)
概率分布就像盖房子的蓝图 , 而随机变量是对试验事件的总结 。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部 。
统计学入门级:常见概率分布+python绘制分布图 如果随机变量X的所有取值都可以逐个列举出来,则称X为离散型随机变量 。相应的概率分布有二项分布,泊松分布 。
如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量 。相应的概率分布有正态分布,均匀分布 , 指数分布,伽马分布,偏态分布 , 卡方分布,beta分布等 。(真多分布,好恐怖~~)
在离散型随机变量X的一切可能值中 , 各可能值与其对应概率的乘积之和称为该随机变量X的期望值,记作E(X)。比如有随机变量,取值依次为:2,2,2 , 4,5 。求其平均值:(2+2+2+4+5)/5 = 3 。
期望值也就是该随机变量总体的均值 。推导过程如下:
= (2+2+2+4+5)/5
= 1/5 2 3 + 4/5 + 5/5
= 3/5 2 + 1/5 4 + 1/5 5
= 0.6 2 + 0.2 4 + 0.2 5
= 60% 2 + 20% 4 + 20%*5
= 1.2 + 0.8 + 1
= 3
倒数第三步可以解释为值为2的数字出现的概率为60%,4的概率为20% , 5的概率为20% 。所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3 。
0-1分布(两点分布) , 它的随机变量的取值为1或0 。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p , 即:
则称随机变量X服从参数为p的0-1分布 , 记作X~B(1 , p) 。
在生活中有很多例子服从两点分布 , 比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等 。
推荐阅读
- b站久诚直播间,久诚有直播吗
- 迅捷路由器密码忘了怎么解,迅捷路由器忘记登录密码怎么办
- jquery如何写数字验证,jquery验证用户名密码
- 直播文案怎么找灵感来源,直播文案怎么写吸引人
- c语言库函数查询 c语言库函数查询手册
- 电视放u盘怎么放,电视放u盘怎么放重复循环
- 电脑中怎么连接到,电脑怎么连接到网络
- chatgpt宣传图片,chatGPT宣传图片
- 什么网站可以接产品拍摄,哪里可以接网拍