python经验分布函数 经验分布函数求法( 四 )


物理:标准分数 = (60-40)/10 = 2
语文:标准分数 = (85-95)/4 = -2.5
从计算结果来看,说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差 。
指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布 。比如一班地铁进站的间隔时间 。如果随机变量X的概率密度为:
则称X服从指数分布,其中的参数λ0 。对应的分布函数 为:
均匀分布的期望值和方差 分别为:
使用Python绘制指数分布的概率分布图:
均匀分布有两种,分为 离散型均匀分布和连续型均匀分布。其中离散型均匀分布最常见的例子就是抛掷骰子啦 。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1,2 , 3,4,5,6 。每个数出现的概率都是1/6 。
设连续型随机变量X具有概率密度函数:
则称X服从区间(a,b)上的均匀分布 。X在等长度的子区间内取值的概率相同 。对应的分布函数为:
f(x)和F(x)的图形分别如下图所示:
均匀分布的期望值和方差 分别为:
怎么用python表示出二维高斯分布函数,mu表示均值,sigma表示协方差矩阵,x表示数据点clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end
python:5种正态性检验方法1.直方图
由于正态分布具有非常典型的中间高,两边低的图形特征,如果样本数据并不服从正态分布,我们可以通过直方图很快地分辨出来 。更进一步地 , Python可以辅助生成基于样本数据估计的正态曲线,这样就容易辅助我们进行判断 。
图形观察虽然直观,但是部分研究者认为单纯观察图形过于主观,因此我们也可以选择使用统计检验的方法去研究数据是否服从正态分布 。
操作步骤:
导入相关的包及数据
2 P-P图及Q-Q图
直方图是最长用于观察数据分布的常用图形选项,尤其是带正态曲线的直方图,可以非常直观地看到实际数据分布和正态曲线的对比 , 而P-P图及Q-Q图则是另一种选择,它可以直观给出实际数据分布和理论的差距 。
值得注意的是,虽然P-P图及Q-Q图常用用于判断数据样本是否服从正态分布,但实际上它们也能判断数据样本是否服从其他的分布
P-P图:反映的是数据的实际累积概率与假定所服从分布的理论累积概率的符合程度 。在此处,我们所假定的分布就是正态分布,如果数据样本是服从正态分布的话,那么实际的累积概率与理论的累积概率应该是相对一致的,放映在图形中就是数据点应该沿着图形的对角线分布 。

推荐阅读