贝叶斯公式java代码 贝叶斯公式中的j( 三 )


举个例子,现在有一个全局函数,其因式分解方程为:
其中fA,fB,fC,fD,fE为各函数,表示变量之间的关系,可以是条件概率也可以是其他关系 。其对应的因子图为:
在概率图中,求某个变量的边缘分布是常见的问题 。这问题有很多求解方法,其中之一就是把贝叶斯网络或马尔科夫随机场转换成因子图,然后用sum-product算法求解 。换言之,基于因子图可以用 sum-product 算法 高效的求各个变量的边缘分布 。
详细的sum-product算法过程,请查看博文: 从贝叶斯方法谈到贝叶斯网络
朴素贝叶斯(Naive Bayesian)是经典的机器学习算法之一 , 也是为数不多的基于概率论的分类算法 。朴素贝叶斯原理简单,也很容易实现 , 多用于文本分类,比如垃圾邮件过滤 。**朴素贝叶斯可以看做是贝叶斯网络的特殊情况:即该网络中无边,各个节点都是独立的 。**
朴素贝叶斯朴素在哪里呢? ——两个假设 :
贝叶斯公式如下:
下面以一个例子来解释朴素贝叶斯,给定数据如下:
现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好,身高矮,不上进,请你判断一下女生是嫁还是不嫁?
这是一个典型的分类问题,转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率 , 谁的概率大,我就能给出嫁或者不嫁的答案!这里我们联系到朴素贝叶斯公式:
我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以转化为好求的三个量,这三个变量都能通过统计的方法求得 。
等等 , 为什么这个成立呢?学过概率论的同学可能有感觉了 , 这个等式成立的条件需要特征之间相互独立吧!对的!这也就是为什么朴素贝叶斯分类有朴素一词的来源 , 朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!
但是为什么需要假设特征之间相互独立呢?
根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率 。
朴素贝叶斯优点 :
朴素贝叶斯缺点 :
理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率 。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时 , 分类效果不好 。
朴素贝叶斯模型(Naive Bayesian Model)的 朴素(Naive)的含义是"很简单很天真" 地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好 。
新闻分类 GitHub: 点击进入
【 机器学习通俗易懂系列文章 】
从贝叶斯方法谈到贝叶斯网络
贝叶斯网络算法Java实现public static void main(String[] args){
int n=10;//定义n
int[] π={};//定义存放π的数组
for(int i=0;i++;in){
π[i]=Ф;
int Pold=g(i,π[i]);//调用g方法
boolean OkToProceed=true;//定义布尔值
while(OkToProceed Math.abs(π[i])u){
//写不下去了 。。。好多都不知道是什么方法
}
}
}
如何调用waka中的贝叶斯分类器的java代码在分类问题中,因变量Y可以看做是数据的label,属于分类变量 。所谓分类问题,就是能够在数据的自变量X空间内找到一些decisionboundaries,把label不同的数据分开,如果某种方法所找出的这些decisionboundaries在自变量X空间内是线性的,这时就说这种方法是一种线性分类器 。贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类 。也就是说,贝叶斯分类器是最小错误率意义上的优化 。目前研究较多的贝叶斯分类器主要有四种,分别是:NaiveBayes、TAN、BAN和GBN 。

推荐阅读