关于损失函数python的信息

神经网络的损失函数需要设置require_grad吗对于神经网络的损失函数来说,通常不需要设置 `require_grad=True` 。因为损失函数的计算过程不需要反向传播梯度,只需要将输出结果与真实值进行比较即可 。
在 PyTorch 中,如果损失函数的计算过程需要梯度反向传播 , 则需要将其设置为可微分张量,同时设置 `require_grad=True` 。但是,对于大部分损失函数来说 , 这并不是必需的 。
当我们在训练神经网络时,可以通过反向传播算法求解每个参数对损失函数的贡献度,从而更新模型参数 。这个过程中只需要设置网络中需要反向传播的张量的 `require_grad=True` 即可 。
从零开始用Python构建神经网络从零开始用Python构建神经网络
动机损失函数python:为了更加深入损失函数python的理解深度学习损失函数python,我们将使用 python 语言从头搭建一个神经网络损失函数python,而不是使用像 Tensorflow 那样的封装好的框架 。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要 。
这篇文章的内容是我的所学,希望也能对你有所帮助 。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比 。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解 。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层 , ?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ 。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)
2 层神经网络的结构
用 Python 可以很容易的构建神经网络类
训练神经网络
这个网络的输出 ? 为:
你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数 。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络 。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:
前向传播
正如我们在上图中看到的,前向传播只是简单的计算 。对于一个基本的 2 层网络来说 , 它的输出是这样的:
我们在 NeuralNetwork 类中增加一个计算前向传播的函数 。为了简单起见我们假设偏置 b 为0:
但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差) 。这就要用到损失函数 。
损失函数
常用的损失函数有很多种,根据模型的需求来选择 。在本教程中,我们使用误差平方和作为损失函数 。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是损失函数python他们的差值求平方以便我们观察误差的绝对值 。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小 。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差 , 并以此更新权值和偏置 。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数 。
回想微积分中的概念,函数的导数就是函数的斜率 。
梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图) 。这种方式被称为梯度下降法 。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们 。因此,我们需要运用链式求导发在来帮助计算导数 。
链式法则用于计算损失函数对 W 和 b 的导数 。注意,为了简单起见 。我们只展示了假设网络只有 1 层的偏导数 。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率) , 因此我们可以相应的调整权值 。
现在我们将反向传播算法的函数添加到 Python 代码中
为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧 。
神经网络可以通过学习得到函数的权重 。而我们仅靠观察是不太可能得到函数的权重的 。
让我们训练神经网络进行 1500 次迭代,看看会发生什么 。注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值 。这与我们之前介绍的梯度下降法一致 。
让我们看看经过 1500 次迭代后的神经网络的最终预测结果:
经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值 。
注意预测值和真实值之间存在细微的误差是允许的 。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力 。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习 。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理 。但是我觉得对于有追求的数据科学家来说 , 理解内部原理是非常有益的 。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助
python gradientboostingregressor可以做预测吗可以
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingRegressor完成
因此就学习损失函数python了下Gradient Boosting算法,在这里分享下损失函数python我的理解
Boosting 算法简介
Boosting算法,我理解的就是两个思想:
1)“三个臭皮匠顶个诸葛亮”,一堆弱分类器的组合就可以成为一个强分类器损失函数python;
2)“知错能改,善莫大焉” , 不断地在错误中学习,迭代来降低犯错概率
【关于损失函数python的信息】当然 , 要理解好Boosting的思想,首先还是从弱学习算法和强学习算法来引入:
1)强学习算法:存在一个多项式时间的学习算法以识别一组概念,且识别的正确率很高;
2)弱学习算法:识别一组概念的正确率仅比随机猜测略好;
KearnsValiant证明损失函数python了弱学习算法与强学习算法的等价问题,如果两者等价,只需找到一个比随机猜测略好的学习算法,就可以将其提升为强学习算法 。
那么是怎么实现“知错就改”的呢?
Boosting算法,通过一系列的迭代来优化分类结果,每迭代一次引入一个弱分类器,来克服现在已经存在的弱分类器组合的shortcomings
在Adaboost算法中,这个shortcomings的表征就是权值高的样本点
而在Gradient Boosting算法中,这个shortcomings的表征就是梯度
无论是Adaboost还是Gradient Boosting,都是通过这个shortcomings来告诉学习器怎么去提升模型,也就是“Boosting”这个名字的由来吧
Adaboost算法
Adaboost是由Freund 和 Schapire在1997年提出的,在整个训练集上维护一个分布权值向量W,用赋予权重的训练集通过弱分类算法产生分类假设(基学习器)y(x),然后计算错误率,用得到的错误率去更新分布权值向量w,对错误分类的样本分配更大的权值,正确分类的样本赋予更小的权值 。每次更新后用相同的弱分类算法产生新的分类假设,这些分类假设的序列构成多分类器 。对这些多分类器用加权的方法进行联合,最后得到决策结果 。
其结构如下图所示:
前一个学习器改变权重w , 然后再经过下一个学习器,最终所有的学习器共同组成最后的学习器 。
如果一个样本在前一个学习器中被误分,那么它所对应的权重会被加重,相应地 , 被正确分类的样本的权重会降低 。
这里主要涉及到两个权重的计算问题:
1)样本的权值
1 没有先验知识的情况下,初始的分布应为等概分布,样本数目为n,权值为1/n
2 每一次的迭代更新权值,提高分错样本的权重
2)弱学习器的权值
1 最后的强学习器是通过多个基学习器通过权值组合得到的 。
2 通过权值体现不同基学习器的影响,正确率高的基学习器权重高 。实际上是分类误差的一个函数
Gradient Boosting
和Adaboost不同,Gradient Boosting 在迭代的时候选择梯度下降的方向来保证最后的结果最好 。
损失函数用来描述模型的“靠谱”程度,假设模型没有过拟合,损失函数越大 , 模型的错误率越高
如果我们的模型能够让损失函数持续的下降 , 则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度方向上下降 。
下面这个流程图是Gradient Boosting的经典图了,数学推导并不复杂,只要理解了Boosting的思想,不难看懂
这里是直接对模型的函数进行更新,利用了参数可加性推广到函数空间 。
训练F0-Fm一共m个基学习器,沿着梯度下降的方向不断更新ρm和am
GradientBoostingRegressor实现
python中的scikit-learn包提供了很方便的GradientBoostingRegressor和GBDT的函数接口,可以很方便的调用函数就可以完成模型的训练和预测
GradientBoostingRegressor函数的参数如下:
class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')[source]?
loss: 选择损失函数,默认值为ls(least squres)
learning_rate: 学习率,模型是0.1
n_estimators: 弱学习器的数目,默认值100
max_depth: 每一个学习器的最大深度,限制回归树的节点数目 , 默认为3
min_samples_split: 可以划分为内部节点的最小样本数,默认为2
min_samples_leaf: 叶节点所需的最小样本数 , 默认为1
……
可以参考
官方文档里带了一个很好的例子,以500个弱学习器,最小平方误差的梯度提升模型,做波士顿房价预测,代码和结果如下:
1 import numpy as np 2 import matplotlib.pyplot as plt 34 from sklearn import ensemble 5 from sklearn import datasets 6 from sklearn.utils import shuffle 7 from sklearn.metrics import mean_squared_error 89 ###############################################################################10 # Load data11 boston = datasets.load_boston()12 X, y = shuffle(boston.data, boston.target, random_state=13)13 X = X.astype(np.float32)14 offset = int(X.shape[0] * 0.9)15 X_train, y_train = X[:offset], y[:offset]16 X_test, y_test = X[offset:], y[offset:]17 18 ###############################################################################19 # Fit regression model20 params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,21'learning_rate': 0.01, 'loss': 'ls'}22 clf = ensemble.GradientBoostingRegressor(**params)23 24 clf.fit(X_train, y_train)25 mse = mean_squared_error(y_test, clf.predict(X_test))26 print("MSE: %.4f" % mse)27 28 ###############################################################################29 # Plot training deviance30 31 # compute test set deviance32 test_score = np.zeros((params['n_estimators'],), dtype=np.float64)33 34 for i, y_pred in enumerate(clf.staged_predict(X_test)):35test_score[i] = clf.loss_(y_test, y_pred)36 37 plt.figure(figsize=(12, 6))38 plt.subplot(1, 2, 1)39 plt.title('Deviance')40 plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',41label='Training Set Deviance')42 plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',43label='Test Set Deviance')44 plt.legend(loc='upper right')45 plt.xlabel('Boosting Iterations')46 plt.ylabel('Deviance')47 48 ###############################################################################49 # Plot feature importance50 feature_importance = clf.feature_importances_51 # make importances relative to max importance52 feature_importance = 100.0 * (feature_importance / feature_importance.max())53 sorted_idx = np.argsort(feature_importance)54 pos = np.arange(sorted_idx.shape[0]) + .555 plt.subplot(1, 2, 2)56 plt.barh(pos, feature_importance[sorted_idx], align='center')57 plt.yticks(pos, boston.feature_names[sorted_idx])58 plt.xlabel('Relative Importance')59 plt.title('Variable Importance')60 plt.show()
可以发现,如果要用Gradient Boosting 算法的话 , 在sklearn包里调用还是非常方便的 , 几行代码即可完成,大部分的工作应该是在特征提取上 。
感觉目前做数据挖掘的工作,特征设计是最重要的,据说现在kaggle竞赛基本是GBDT的天下,优劣其实还是特征上,感觉做项目也是,不断的在研究数据中培养对数据的敏感度 。
交叉熵损失函数是什么?平滑函数 。
交叉熵损失函数损失函数python , 也称为对数损失或者logistic损失 。当模型产生损失函数python了预测值之后损失函数python,将对类别的预测概率与真实值(由0或1组成)进行不比较损失函数python,计算所产生的损失损失函数python,然后基于此损失设置对数形式的惩罚项 。
在神经网络中,所使用的Softmax函数是连续可导函数 , 这使得可以计算出损失函数相对于神经网络中每个权重的导数(在《机器学习数学基础》中有对此的完整推导过程和案例,这样就可以相应地调整模型的权重以最小化损失函数 。
扩展资料:
注意事项:
当预测类别为二分类时,交叉熵损失函数的计算公式如下图 , 其中y是真实类别(值为0或1),p是预测类别的概率(值为0~1之间的小数) 。
计算二分类的交叉熵损失函数的python代码如下图 , 其中esp是一个极小值,第五行代码clip的目的是保证预测概率的值在0~1之间,输出的损失值数组求和后 , 就是损失函数最后的返回值 。
参考资料来源:百度百科-交叉熵
参考资料来源:百度百科-损失函数
关于损失函数python和的介绍到此就结束了 , 不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。

    推荐阅读