虹软人脸识别3.0 - 图像数据结构介绍(Android)

贵有恒,何必三更起、五更眠、最无益,只怕一日曝、十日寒。这篇文章主要讲述虹软人脸识别3.0 - 图像数据结构介绍(Android)相关的知识,希望能为你提供帮助。
从虹软开放了2.0版本SDK以来,由于具有免费、离线使用的特点,我们公司在人脸识别门禁应用中使用了虹软SDK,识别效果还不错,因此比较关注虹软SDK的官方动态。近期上线了ArcFace 3.0 SDK版本,确实做了比较大的更新。首先本篇介绍一下关于android平台算法的更新内容,下一篇将针对Windows平台的算法更新展开介绍。

  • 特征比对支持比对模型选择,有生活照比对模型和人证比对模型
  • 识别率、防***效果显著提升
  • 特征值更新,升级后人脸库需重新注册
  • Android平台新增64位的SDK
  • 图像处理工具类
  • 人脸检测同时支持全角度及单一角度
  • 新增了一种图像数据传入方式
在实际开发过程中使用新的图像数据结构具有一定的难度,本文将从以下几点对该图像数据结构及使用方式进行详细介绍
  1. SDK接口变动
  2. ArcSoftImageInfo类解析
  3. SDK相关代码解析
  4. 步长的作用
  5. 将Camera2回传的Image转换为ArcSoftImageInfo
一、SDK接口变动
在接入3.0版SDK时,发现FaceEngine类中的detectFacesprocessextractFaceFeature等传入图像数据的函数都有重载函数,重载函数的接口均使用ArcSoftImageInfo对象作为入参的图像数据,以人脸检测为例,具体接口如下:
原始接口:
public int detectFaces(byte[] data, int width, int height, int format, List< FaceInfo> faceInfoList)

新增接口:
public int detectFaces(ArcSoftImageInfo arcSoftImageInfo, List< FaceInfo> faceInfoList)

可以看到,重载函数传入ArcSoftImageInfo对象作为图像数据进行检测,arcSoftImageInfo替代了原来的data, width, height, format
二、ArcSoftImageInfo类解析
在我实际使用后发现,ArcSoftImageInfo不只是简单封装一下,它还将一维数组data修改为二维数组planes,还新增了一个与planes对应的步长数组strides
步长概念介绍:
步长可以理解为一行像素的字节数。
类结构如下:
public class ArcSoftImageInfo { private int width; private int height; private int imageFormat; private byte[][] planes; private int[] strides; ... }

官方文档中对该类的介绍:
  • 成员描述
类型 变量名 描述
int width 图像宽度
int height 图像高度
int imageFormat 图像格式
byte[][] planes 图像通道
int[] strides 每个图像通道的步长
  • 组成方式介绍
// arcSoftImageInfo组成方式举例:// NV21格式数据,有两个通道, // Y通道步长一般为图像宽度,若图像经过8字节对齐、16字节对齐等操作,需填入对齐后的图像步长 // VU通道步长一般为图像宽度,若图像经过8字节对齐、16字节对齐等操作,需填入对齐后的图像步长 ArcSoftImageInfo arcSoftImageInfo = new ArcSoftImageInfo(width, height, FaceEngine.CP_PAF_NV21, new byte[][]{planeY, planeVU}, new int[]{yStride, vuStride}); // GRAY,只有一个通道, // 步长一般为图像宽度,若图像经过8字节对齐、16字节对齐等操作,需填入对齐后的图像步长 arcSoftImageInfo = new ArcSoftImageInfo(width, height, FaceEngine.CP_PAF_GRAY, new byte[][]{gray}, new int[]{grayStride}); // BGR24,只有一个通道, // 步长一般为图像宽度的三倍,若图像经过8字节对齐、16字节对齐等操作,需填入对齐后的图像步长 arcSoftImageInfo = new ArcSoftImageInfo(width, height, FaceEngine.CP_PAF_BGR24, new byte[][]{bgr24}, new int[]{bgr24Stride}); // DEPTH_U16,只有一个通道, // 步长一般为图像宽度的两倍,若图像经过8字节对齐、16字节对齐等操作,需填入对齐后的图像步长 arcSoftImageInfo = new ArcSoftImageInfo(width, height, FaceEngine.CP_PAF_DEPTH_U16, new byte[][]{depthU16}, new int[]{depthU16Stride});

可以看到,ArcSoftImageInfo用于存储分离的图像数据,以NV21数据为例,NV21数据有两个通道,那二维数组planes存储的就是两个数组:y数组和vu数组。以下是NV21数据的排列方式:
NV21图像格式属于 YUV颜色空间中的YUV420SP格式,每四个Y分量共用一组U分量和V分量,Y连续存储,U与V交叉存储。
排列方式如下(以8x4的图像为例):
Y Y? Y Y ? Y Y ? Y Y
Y Y? Y Y ? Y Y ? Y Y
Y Y? Y Y ? Y Y ? Y Y
Y Y? Y Y ? Y Y ? Y Y
V U? V U ? V U? V U
V U ?V U ? V U?V U
以上数据分为两个通道,首先是连续的Y数据,然后是交叉存储的VU数据。如果我们使用的是Camera API,那基本用不到ArcSoftImageInfo类,因为Camera API回传的NV21数据是连续的,直接使用旧版接口即可;而当我们使用的是其他API时,拿到的数据可能是不连续的,例如使用Camera2 APIMediaCodec拿到的android.media.Image类对象,其图像数据也是分通道的,我们可以根据其通道内容,获取Y通道数据和VU通道数据,组成NV21格式的ArcSoftImageInfo对象用于处理。
三、SDK相关代码解析
我们来看下SDK中判断图像数据是否合法的校验代码:
注:原始代码由于被编译器修改过,阅读体验不佳,以下代码是我修改过的,将常量值替换回常量名,更便于阅读。
  • 校验分离的图像信息数据
    private static boolean isImageDataValid(byte[] data, int width, int height, int format) { return (format == CP_PAF_NV21 & & (height & 1) == 0 & & data.length == width * height * 3 / 2)|| (format == CP_PAF_BGR24 & & data.length == width * height * 3)|| (format == CP_PAF_GRAY & & data.length == width * height) || (format == CP_PAF_DEPTH_U16 & & data.length == width * height * 2); }

    解读:
    各个图像数据的要求如下:
    1. NV21格式图像数据的高度是偶数,数据大小是:宽x高x3/2
    2. BGR24格式图像数据的大小是:宽x高x3
    3. GRAY格式图像数据的大小是:宽x高
    4. DEPTH_U16格式图像数据的大小是:宽x高x2
  • 校验ArcSoftImageInfo对象
    private static boolean isImageDataValid(ArcSoftImageInfo arcSoftImageInfo) { byte[][] planes = arcSoftImageInfo.getPlanes(); int[] strides = arcSoftImageInfo.getStrides(); if (planes != null & & strides != null) { if (planes.length != strides.length) { return false; } else { byte[][] var3 = planes; int var4 = planes.length; for(int var5 = 0; var5 < var4; ++var5) { byte[] plane = var3[var5]; if (plane == null || plane.length == 0) { return false; } }switch(arcSoftImageInfo.getImageFormat()) { case CP_PAF_BGR24: case CP_PAF_GRAY: case CP_PAF_DEPTH_U16: return planes.length == 1 & & planes[0].length == arcSoftImageInfo.getStrides()[0] * arcSoftImageInfo.getHeight(); case CP_PAF_NV21: return (arcSoftImageInfo.getHeight() & 1) == 0 & & planes.length == 2 & & planes[0].length == planes[1].length * 2 & & planes[0].length == arcSoftImageInfo.getStrides()[0] * arcSoftImageInfo.getHeight() & & planes[1].length == arcSoftImageInfo.getStrides()[1] * arcSoftImageInfo.getHeight() / 2; default: return false; } } } else { return false; } }

    解读:
    1. 每个通道数据的大小是:高度x每个通道的步长
    2. BGR24GRAYDEPTH_U16格式图像数据都只有一个通道,但上述示例组成方式说明中提到它们的步长不同,关系如下:
      • BGR24格式图像数据步长一般为3 x width
      • GRAY格式图像数据步长一般为width
      • DEPTH_U16格式图像数据步长一般为2 x width
    3. NV21格式图像数据的高度是偶数,有两个通道,且第0个通道的数据大小是第1个通道数据大小的2倍。
    四、步长的作用
    • 具体踩坑举例
    【虹软人脸识别3.0 - 图像数据结构介绍(Android)】如下图,这是在某台手机上使用Camera2 API时,指定了以1520x760分辨率进行预览时获取的数据。虽然指定的分辨率是1520x760,但是预览数据的实际大小却是1536x760,解析存下的图像数据,发现右边填充的16像素内容均为0,此时若我们以1520x760的分辨率去将这组YUV数据取出并转换为NV21,并在进行人脸检测时传入的宽度是1520,SDK将无法检测到人脸;若我们以1536x760的分辨率去解析,生成的NV21传给SDK,并且传入的宽度是1536时,SDK能够检测到人脸。
    虹软人脸识别3.0 - 图像数据结构介绍(Android)

    文章图片

  • 步长的重要性
只是差了这几个像素,为什么就导致人脸检测不到了呢?之前说到过,步长可以理解为一行像素的字节数。如果第一行像素的读取有偏差,那后续像素的读取也会受到影响。< br>
以下是对一张大小为1000x554NV21图像数据,以不同步长进行解析的结果:
以正确的步长解析 以错误的步长解析
虹软人脸识别3.0 - 图像数据结构介绍(Android)

文章图片
虹软人脸识别3.0 - 图像数据结构介绍(Android)

文章图片
可以看到,对于一张图像,如果使用了错误的步长去解析,我们可能就无法看到正确的图像内容。
结论:通过引入图像步长能够有效的避免高字节对齐的问题。
五、将Camera2回传的Image转换为ArcSoftImageInfo
  • Camera2 API回传数据处理
    对于以上场景,我们可提取android.media.Image对象的YUV通道数据,组成NV21格式的ArcSoftImageInfo对象,传入SDK处理。示例代码如下:
    • 取出Camera2 API回传数据的YUV通道数据
      private class OnImageAvailableListenerImpl implements ImageReader.OnImageAvailableListener{ private byte[] y; private byte[] u; private byte[] v; @Override public void onImageAvailable(ImageReader reader) { Image image = reader.acquireNextImage(); // 实际结果一般是 Y:U:V == 4:2:2 if (camera2Listener != null & & image.getFormat() == ImageFormat.YUV_420_888) { Image.Plane[] planes = image.getPlanes(); // 重复使用同一批byte数组,减少gc频率 if (y == null) { y = new byte[planes[0].getBuffer().limit() - planes[0].getBuffer().position()]; u = new byte[planes[1].getBuffer().limit() - planes[1].getBuffer().position()]; v = new byte[planes[2].getBuffer().limit() - planes[2].getBuffer().position()]; } if (image.getPlanes()[0].getBuffer().remaining() == y.length) { planes[0].getBuffer().get(y); planes[1].getBuffer().get(u); planes[2].getBuffer().get(v); camera2Listener.onPreview(y, u, v, mPreviewSize, planes[0].getRowStride()); } } image.close(); } }

    • 转换为ArcSoftImageInfo对象
    注意: 拿到的YUV数据可能是YUV422,也可能是YUV420,需要分别实现两者转换为NV21格式的ArcSoftImageInfo对象的函数。
    @Override public void onPreview(final byte[] y, final byte[] u, final byte[] v, final Size previewSize, final int stride) { if (arcSoftImageInfo == null) { arcSoftImageInfo = new ArcSoftImageInfo(previewSize.getWidth(), previewSize.getHeight(), FaceEngine.CP_PAF_NV21); } // 回传数据是YUV422 if (y.length / u.length == 2) { ImageUtil.yuv422ToNv21ImageInfo(y, u, v, arcSoftImageInfo, stride, previewSize.getHeight()); } // 回传数据是YUV420 else if (y.length / u.length == 4) { ImageUtil.yuv420ToNv21ImageInfo(y, u, v, arcSoftImageInfo, stride, previewSize.getHeight()); } // 此时的arcSoftImageInfo数据即可传给SDK使用 if (faceEngine != null) { List< FaceInfo> faceInfoList = new ArrayList< > (); int code = faceEngine.detectFaces(arcSoftImageInfo, faceInfoList); if (code == ErrorInfo.MOK) { Log.i(TAG, "onPreview: " + code + "" + faceInfoList.size()); } else { Log.i(TAG, "onPreview: no face detected , code is : " + code); } } else { Log.e(TAG, "onPreview: faceEngine is null"); return; } ... }

以上代码中便是Camera2 API回传的数据转换为ArcSoftImageInfo对象并检测的具体实现。以下是将YUV数据组成ArcSoftImageInfo对象的具体实现。
  • YUV数据组成ArcSoftImageInfo对象
    对于Y通道,直接拷贝即可,对于U通道和V通道,需要考虑这组YUV数据的格式是YUV420还是YUV422,再获取其中的UV数据
    /** * YUV420数据转换为NV21格式的ArcSoftImageInfo * * @param yYUV420数据的y分量 * @param uYUV420数据的u分量 * @param vYUV420数据的v分量 * @param arcSoftImageInfo NV21格式的ArcSoftImageInfo * @param stridey分量的步长,一般情况下,由于YUV数据的对应关系,Y分量步长确定了,U和V也随之确定 * @param height图像高度 */ public static void yuv420ToNv21ImageInfo(byte[] y, byte[] u, byte[] v, ArcSoftImageInfo arcSoftImageInfo, int stride, int height) { if (arcSoftImageInfo.getPlanes() == null) { arcSoftImageInfo.setPlanes(new byte[][]{new byte[stride * height], new byte[stride * height / 2]}); arcSoftImageInfo.setStrides(new int[]{stride, stride}); } System.arraycopy(y, 0, arcSoftImageInfo.getPlanes()[0], 0, y.length); // 注意,vuLength 不能直接通过步长和高度计算,实测发现Camera2 API回传的数据有数据丢失,需要使用真实数据长度 byte[] vu = arcSoftImageInfo.getPlanes()[1]; int vuLength = u.length / 2 + v.length / 2; int uIndex = 0, vIndex = 0; for (int i = 0; i < vuLength; i++) { vu[i] = v[vIndex++]; vu[i + 1] = u[uIndex++]; } } /** * YUV422数据转换为NV21格式的ArcSoftImageInfo * * @param yYUV422数据的y分量 * @param uYUV422数据的u分量 * @param vYUV422数据的v分量 * @param arcSoftImageInfo NV21格式的ArcSoftImageInfo * @param stridey分量的步长,一般情况下,由于YUV数据的对应关系,Y分量步长确定了,U和V也随之确定 * @param height图像高度 */ public static void yuv422ToNv21ImageInfo(byte[] y, byte[] u, byte[] v, ArcSoftImageInfo arcSoftImageInfo, int stride, int height) { if (arcSoftImageInfo.getPlanes() == null) { arcSoftImageInfo.setPlanes(new byte[][]{new byte[stride * height], new byte[stride * height / 2]}); arcSoftImageInfo.setStrides(new int[]{stride, stride}); } System.arraycopy(y, 0, arcSoftImageInfo.getPlanes()[0], 0, y.length); byte[] vu = arcSoftImageInfo.getPlanes()[1]; // 注意,vuLength 不能直接通过步长和高度计算,实测发现Camera2 API回传的数据有数据丢失,需要使用真实数据长度 int vuLength = u.length / 2 + v.length / 2; int uIndex = 0, vIndex = 0; for (int i = 0; i < vuLength; i += 2) { vu[i] = v[vIndex]; vu[i + 1] = u[uIndex]; vIndex += 2; uIndex += 2; } }

六、ArcSoftImageInfo优点总结
  1. 在获取的图像数据源是分通道的数据时,使用ArcSoftImageInfo对象传入分离的图像数据可避免数据拼接所需的额外内存消耗。
  2. 引入了步长的概念,在使用时传入了各个通道的步长,使开发者在使用SDK时对图像数据的了解更清晰。
Android Demo可在虹软人脸识别开放平台下载

    推荐阅读