9.python-opencv边缘检测 第一章 python-opencv-图片导入和显示
第二章 python-opencv图像简单处理
第三章 python-opencv图像mask掩膜处理
第四章 python-opencv图像马赛克
第五章 python-opencv人脸马赛克
第六章 python-opencv人脸检测
第七章 python-opencv图像张贴
第八章 python-opencv轮廓绘制
`
文章目录
- 9.python-opencv边缘检测
- 前言
- 一、完整代码
- 二、部分代码说明
-
- 1.高斯模糊处理
- 2.轮廓检测
- 结果展示
前言 本章主要说明如何使用python-opencv题图图片中图案的边缘。
一、完整代码
import cv2if __name__ == '__main__':
# 加载图片
img = cv2.imread('./tong.jpg')
# 将图片转化为灰度图像
gray = cv2.cvtColor(img, code = cv2.COLOR_BGR2GRAY)
# 将灰度图像进行高斯模糊
gray1 = cv2.GaussianBlur(gray, (5,5),0)#高斯模糊
# 进行轮廓的检测
canny = cv2.Canny(gray1, 100, 200)cv2.imshow('dog', canny)
cv2.waitKey(0)
cv2.destroyAllWindows()
二、部分代码说明 1.高斯模糊处理 【python-opencv|python-opencv边缘检测】在进行轮廓检测前进行高斯模糊处理是为了去除噪声。
opencv中的高斯模糊函数定义如下:
GaussianBlur(src, ksize, sigmaX, dst=None, sigmaY=None, borderType=None)
各参数解释:
该函数将源图像与指定的高斯核进行卷积。本文中的使用方法:
. src 输入图像; 图像可以有任意数量的通道,这些通道被处理
. dst 输出与 src 大小和类型相同的图像。
. ksize 高斯内核大小。 ksize.width 和 ksize.height 可以不同,但它们都必须是正数和奇数。 或者,它们可以是零,然后根据 sigma 计算它们。
. sigmaX X 方向的高斯核标准差。
. sigmaY Y 方向的高斯核标准差; 如果 sigmaY 为零,则设置为等于 sigmaX,如果两个 sigma 均为零,则根据 ksize.width 和 ksize.height 计算,
. borderType 像素外推法
gray1 = cv2.GaussianBlur(gray, (5,5),0)
将灰度图像gray使用5x5的高斯核进行处理,高斯核尺寸越大去噪效果越好,但是图像会越模糊,X 方向的高斯核标准差设置为0。
高斯模糊效果如下,左侧为原始图片,右侧为高斯模糊处理后的图片:
文章图片
2.轮廓检测 轮廓建材使用canny函数,定义如下:
Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None)
各参数解释:
Canny(图像,threshold1,threshold2[,edges[,apertureSize[,L2gradient]]])->边缘在本文的使用方法:
.
.该函数在输入图像中查找边缘,并使用 Canny 算法在输出地图边缘中标记它们。 threshold1 和 threshold2 之间的最小值用于边缘链接。最大值用于查找强边缘的初始段。
. image 8 位输入图像。
. edges 输出边缘图;单通道 8 位图像,其大小与 image 相同。
. threshold1 滞后过程的第一个阈值。
. threshold2 滞后过程的第二个阈值。
. apertureSize Sobel 算子的孔径大小。
canny = cv2.Canny(gray1, 100, 200)
结果展示
文章图片
文章图片
推荐阅读
- python-opencv|7.python-opencv图像张贴
- 力扣算法题-python|力扣算法题总结(python)—二分查找
- python-opencv|5.python-opencv人脸马赛克
- Python 设计模式(单例模式)
- 人工智能|终结 Python 原生字典(这个库要逆天改命了)
- python|终结 Python 原生字典(这个库真的要逆天改命了)
- 数据库|MySQL 暴跌!
- 为什么range不是迭代器(range到底是什么类型?)
- 大名鼎鼎的Requests库用了什么编码风格()