需求背景
朋友的单位,有一个小型的图书室,图书室中摆放了很多的书,每本书都被编号放在对应的区域,为了让大家更快,更容易找到这些书,他联系我,让我帮他弄一个图书查询系统。按道理来说,这个应该是一个比较复杂的项目,但是考虑到了云函数的存在,所以就打算把整个应用部署在Serverless架构上。
功能设计
- 让朋友把书籍整理信息,存储到一个Excel表格中;
- 将Excel表放到COS中,云函数读取这个表,并且解析;
- 根据词语的相似寻找相似的图书;
- 前端页面通过MUI制作,放在cos中;
文章图片
主要包括书名和编号,同时下面包括分类的tab:
文章图片
核心代码实现:
import jieba
import openpyxl
from gensim import corpora, models, similarities
from collections import defaultdict
import urllib.requestwith open("/tmp/book.xlsx", "wb") as f:
f.write(
urllib.request.urlopen("https://********").read()
)top_str = "abcdefghijklmn"
book_dict = {}
book_list = []
wb = openpyxl.load_workbook('/tmp/book.xlsx')
sheets = wb.sheetnames
for eve_sheet in sheets:
print(eve_sheet)
sheet = wb.get_sheet_by_name(eve_sheet)
this_book_name_index = None
this_book_number_index = None
for eve_header in top_str:
if sheet[eve_header][0].value =https://www.it610.com/article/="书名":
this_book_name_index = eve_header
if sheet[eve_header][0].value =https://www.it610.com/article/="编号":
this_book_number_index = eve_header
print(this_book_name_index, this_book_number_index)
if this_book_name_index and this_book_number_index:
this_book_list_len = len(sheet[this_book_name_index])
for i in range(1, this_book_list_len):
add_key = "%s_%s_%s" % (
sheet[this_book_name_index][i].value, eve_sheet, sheet[this_book_number_index][i].value)
add_value = https://www.it610.com/article/{"category": eve_sheet,
"name": sheet[this_book_name_index][i].value,
"number": sheet[this_book_number_index][i].value
}
book_dict[add_key] = add_value
book_list.append(add_key)def getBookList(book, book_list):
documents = []
for eve_sentence in book_list:
tempDatahttps://www.it610.com/article/= " ".join(jieba.cut(eve_sentence))
documents.append(tempData)
texts = [[word for word in document.split()] for document in documents]
frequency = defaultdict(int)
for text in texts:
for word in text:
frequency[word] += 1
dictionary = corpora.Dictionary(texts)
new_xs = dictionary.doc2bow(jieba.cut(book))
corpus = [dictionary.doc2bow(text) for text in texts]
tfidf = models.TfidfModel(corpus)
featurenum = len(dictionary.token2id.keys())
sim = similarities.SparseMatrixSimilarity(
tfidf[corpus],
num_features=featurenum
)[tfidf[new_xs]]
book_result_list = [(sim[i], book_list[i]) for i in range(0, len(book_list))]
book_result_list.sort(key=lambda x: x[0], reverse=True)
result = []
for eve in book_result_list:
if eve[0] >= 0.25:
result.append(eve)
return resultdef main_handler(event, context):
try:
print(event)
name = event["body"]
print(name)
base_html = '''{{book_name}}分类:{{book_category}}
编号:{{book_number}}'''
result_str = ""
for eve_book in getBookList(name, book_list):
book_infor = book_dict[eve_book[1]]
result_str = result_str + base_html.replace("{{book_name}}", book_infor['name']) \
.replace("{{book_category}}", book_infor['category']) \
.replace("{{book_number}}", book_infor['number'] if book_infor['number'] else "")
if result_str:
return result_str
except Exception as e:
print(e)
return '''未找到图书信息,请您重新搜索。'''
同时配置APIGW:
文章图片
首页:
图书检索系统 - 锐客网
html,
body {
background-color: #efeff4;
}图书检索系统
可以在搜索框内输入书籍的全称,或者书籍的简称,系统支持智能检索功能。
效果展示 首页:
文章图片
搜索结果:
文章图片
(我是通过Webview封装成一个APP)
总结 这个APP是一个低频使用APP,可以这样认为,如果做在一个传统服务器上,这应该不是一个明智的选择,云函数的按量付费,cos与APIGW的融合,完美解决了资源浪费的问题,同时借用云函数的APIGW触发器,很简单轻松的替代传统的Web框架和部分服务器软件的安装和使用、维护等。这个例子非常小,但是确是一个有趣的小工具,除了图书查询之外,还可以考虑做成成绩查询等。
【serverless|基于Serverless的图书查询APP的实现】
文章图片
推荐阅读
- tensorflow|3D点云-的初识
- python|python 两点曲线_Python已经成为排名第一的编程语言!附带最新Python400集视频教学...
- 人脸识别|使用Opencv+树莓派实现人脸识别(二)人脸识别和PyQt界面整合
- 人脸识别|面向佩戴口罩的人脸识别系统【4】-人脸识别
- python|第二十九(如何搭建数据驱动自动化测试框架(粗糙))
- python|Python如何实现人脸识别系统
- python办公自动化|python办公自动化(六)python-pptx创建PPT、操作幻灯片、文本框、绘制图表、插入图片、读取内容
- python中使用ModelForm
- 用了十几年才想明白(Python的精髓居然是方括号、花括号和圆括号!)