【手把手制作三阶魔方模拟器】用MATLAB让你的魔方动起来
- 1 定义魔方初始状态
- 2 操作模块
-
- 2.1 全操作定义
- 2.2 旋转公式小函数
- 2.3操作识别
- 3 显示模块
-
- 3.1 初始化
- 3.2 显示操作后的魔方
- 4 测试
- 其他
by 今天不飞了
有一个酷爱魔方的朋友,托我给他定制一个专门用于“训练魔方观察和预判能力”的程序。听完需求之后觉得很有趣,就答应了,并决定把整个制作过程公开。
今天不飞了,一起写代码吧!
上次已经画好三阶魔方,是时候让它动起来了。话不多说,直接上代码。
1 定义魔方初始状态
function [axisBlock,cornerBlock, edgeBlock] = init(axisPosList,cornerPosList,edgePosList)% 轴块属性初始化
axisBlock = cell(6,1);
for n = 1:6
axisBlock{
n}.RotateMatrix = [1,0,0;
0,1,0;
0,0,1];
axisBlock{
n}.position = axisPosList(n,:);
axisBlock{
n}.color = ones(1,6)*7;
axisBlock{
n}.color(n) = n;
end
% 角块属性初始化
cornerBlock = cell(8,1);
for n = 1:8
cornerBlock{
n}.RotateMatrix = [1,0,0;
0,1,0;
0,0,1];
cornerBlock{
n}.position = cornerPosList(n,:);
cornerBlock{
n}.color = ones(1,6)*7;
end
cornerBlock{
1}.color([1,2,5]) = [1,2,5];
cornerBlock{
2}.color([1,2,3]) = [1,2,3];
cornerBlock{
3}.color([1,3,4]) = [1,3,4];
cornerBlock{
4}.color([1,4,5]) = [1,4,5];
cornerBlock{
5}.color([6,2,5]) = [6,2,5];
cornerBlock{
6}.color([6,2,3]) = [6,2,3];
cornerBlock{
7}.color([6,3,4]) = [6,3,4];
cornerBlock{
8}.color([6,4,5]) = [6,4,5];
% 棱块属性初始化
edgeBlock = cell(12,1);
for n = 1:12
edgeBlock{
n}.RotateMatrix = [1,0,0;
0,1,0;
0,0,1];
edgeBlock{
n}.position = edgePosList(n,:);
edgeBlock{
n}.color = ones(1,6)*7;
end
edgeBlock{
1}.color([1,2]) = [1,2];
edgeBlock{
2}.color([1,3]) = [1,3];
edgeBlock{
3}.color([1,4]) = [1,4];
edgeBlock{
4}.color([1,5]) = [1,5];
edgeBlock{
5}.color([2,3]) = [2,3];
edgeBlock{
6}.color([3,4]) = [3,4];
edgeBlock{
7}.color([4,5]) = [4,5];
edgeBlock{
8}.color([5,2]) = [5,2];
edgeBlock{
9}.color([6,2]) = [6,2];
edgeBlock{
10}.color([6,3]) = [6,3];
edgeBlock{
11}.color([6,4]) = [6,4];
edgeBlock{
12}.color([6,5]) = [6,5];
end
2 操作模块 2.1 全操作定义 就是所谓的“U U’ R R’ f r M x” 等等,直接上成品,对推导过程感兴趣的,可以上B站看录播视频(见文末)
function [blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(opt, ...
blockIdx, axisBlock, cornerBlock, edgeBlock)switch optcase 1 % F
R = getRotateMatrix(1,0,0);
for n = blockIdx.cornerIdx([1,2,6,5])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([1,5,9,8])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([1,2,6,5]) = blockIdx.cornerIdx([2,6,5,1]) ;
blockIdx.edgeIdx([1,5,9,8]) = blockIdx.edgeIdx([5,9,8,1]);
case -1 % F'
R = getRotateMatrix(-1,0,0);
for n = blockIdx.cornerIdx([1,2,6,5])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([1,5,9,8])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([1,2,6,5]) = blockIdx.cornerIdx([5,1,2,6]) ;
blockIdx.edgeIdx([1,5,9,8]) = blockIdx.edgeIdx([8,1,5,9]);
case 2 % R
R = getRotateMatrix(0,1,0);
for n = blockIdx.cornerIdx([2,3,7,6])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([2,6,10,5])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([2,3,7,6]) = blockIdx.cornerIdx([3,7,6,2]) ;
blockIdx.edgeIdx([2,6,10,5]) = blockIdx.edgeIdx([6,10,5,2]);
case -2 % R'
R = getRotateMatrix(0,-1,0);
for n = blockIdx.cornerIdx([2,3,7,6])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([2,6,10,5])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([2,3,7,6]) = blockIdx.cornerIdx([6,2,3,7]) ;
blockIdx.edgeIdx([2,6,10,5]) = blockIdx.edgeIdx([5,2,6,10]);
case 3 % U
R = getRotateMatrix(0,0,1);
for n = blockIdx.cornerIdx([5,6,7,8])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([9,10,11,12])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([5,6,7,8]) = blockIdx.cornerIdx([6,7,8,5]) ;
blockIdx.edgeIdx([9,10,11,12]) = blockIdx.edgeIdx([10,11,12,9]);
case -3 % U'
R = getRotateMatrix(0,0,-1);
for n = blockIdx.cornerIdx([5,6,7,8])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([9,10,11,12])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([5,6,7,8]) = blockIdx.cornerIdx([8,5,6,7]) ;
blockIdx.edgeIdx([9,10,11,12]) = blockIdx.edgeIdx([12,9,10,11]);
case 4 % B
R = getRotateMatrix(-1,0,0);
for n = blockIdx.cornerIdx([3,4,8,7])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([3,7,11,6])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([3,4,8,7]) = blockIdx.cornerIdx([4,8,7,3]) ;
blockIdx.edgeIdx([3,7,11,6]) = blockIdx.edgeIdx([7,11,6,3]);
case -4 % B'
R = getRotateMatrix(1,0,0);
for n = blockIdx.cornerIdx([3,4,8,7])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([3,7,11,6])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([3,4,8,7]) = blockIdx.cornerIdx([7,3,4,8]) ;
blockIdx.edgeIdx([3,7,11,6]) = blockIdx.edgeIdx([6,3,7,11]);
case 5 % L
R = getRotateMatrix(0,-1,0);
for n = blockIdx.cornerIdx([1,5,8,4])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([4,8,12,7])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([1,5,8,4]) = blockIdx.cornerIdx([5,8,4,1]) ;
blockIdx.edgeIdx([4,8,12,7]) = blockIdx.edgeIdx([8,12,7,4]);
case -5 % L'
R = getRotateMatrix(0,1,0);
for n = blockIdx.cornerIdx([1,5,8,4])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([4,8,12,7])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([1,5,8,4]) = blockIdx.cornerIdx([4,1,5,8]) ;
blockIdx.edgeIdx([4,8,12,7]) = blockIdx.edgeIdx([7,4,8,12]);
case 6 % D
R = getRotateMatrix(0,0,-1);
for n = blockIdx.cornerIdx([1,2,3,4])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([1,2,3,4])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([1,2,3,4]) = blockIdx.cornerIdx([4,1,2,3]) ;
blockIdx.edgeIdx([1,2,3,4]) = blockIdx.edgeIdx([4,1,2,3]);
case -6 % D'
R = getRotateMatrix(0,0,1);
for n = blockIdx.cornerIdx([1,2,3,4])
cornerBlock{
n}.RotateMatrix = cornerBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([1,2,3,4])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.cornerIdx([1,2,3,4]) = blockIdx.cornerIdx([2,3,4,1]) ;
blockIdx.edgeIdx([1,2,3,4]) = blockIdx.edgeIdx([2,3,4,1]);
case 13 % S
R = getRotateMatrix(1,0,0);
for n = blockIdx.axisIdx([1,3,6,5])
axisBlock{
n}.RotateMatrix = axisBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([2,10,12,4])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.axisIdx([1,3,6,5]) = blockIdx.axisIdx([3,6,5,1]) ;
blockIdx.edgeIdx([2,10,12,4]) = blockIdx.edgeIdx([10,12,4,2]);
case -13 % S'
R = getRotateMatrix(-1,0,0);
for n = blockIdx.axisIdx([1,3,6,5])
axisBlock{
n}.RotateMatrix = axisBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([2,10,12,4])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.axisIdx([1,3,6,5]) = blockIdx.axisIdx([5,1,3,6]) ;
blockIdx.edgeIdx([2,10,12,4]) = blockIdx.edgeIdx([4,2,10,12]);
case 14 % M
R = getRotateMatrix(0,-1,0);
for n = blockIdx.axisIdx([1,4,6,2])
axisBlock{
n}.RotateMatrix = axisBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([1,3,11,9])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.axisIdx([1,4,6,2]) = blockIdx.axisIdx([2,1,4,6]) ;
blockIdx.edgeIdx([1,3,11,9]) = blockIdx.edgeIdx([9,1,3,11]);
case -14 % M'
R = getRotateMatrix(0,1,0);
for n = blockIdx.axisIdx([1,4,6,2])
axisBlock{
n}.RotateMatrix = axisBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([1,3,11,9])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.axisIdx([1,4,6,2]) = blockIdx.axisIdx([4,6,2,1]) ;
blockIdx.edgeIdx([1,3,11,9]) = blockIdx.edgeIdx([3,11,9,1]);
case 15 % E
R = getRotateMatrix(0,0,-1);
for n = blockIdx.axisIdx([2,3,4,5])
axisBlock{
n}.RotateMatrix = axisBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([5,6,7,8])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.axisIdx([2,3,4,5]) = blockIdx.axisIdx([5,2,3,4]) ;
blockIdx.edgeIdx([5,6,7,8]) = blockIdx.edgeIdx([8,5,6,7]);
case -15 % E'
R = getRotateMatrix(0,0,1);
for n = blockIdx.axisIdx([2,3,4,5])
axisBlock{
n}.RotateMatrix = axisBlock{
n}.RotateMatrix*R;
end
for n = blockIdx.edgeIdx([5,6,7,8])
edgeBlock{
n}.RotateMatrix = edgeBlock{
n}.RotateMatrix*R;
end
blockIdx.axisIdx([2,3,4,5]) = blockIdx.axisIdx([3,4,5,2]) ;
blockIdx.edgeIdx([5,6,7,8]) = blockIdx.edgeIdx([6,7,8,5]);
case 7 % f
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(1, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% F
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(13, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Scase -7 % f'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-1, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% F'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-13, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% S'case 8 % r
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(2, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% R
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-14, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% M'case -8 % r'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-2, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% R'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(14, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% M
case 9 % u
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(3, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% U
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-15, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% E'case -9 % u'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-3, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% U'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(15, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Ecase 10 % b
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-4, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% B
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-13, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% S'case -10 % b'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-4, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% B'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(13, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Scase 11 % l
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(5, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% L
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(14, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Mcase -11 % l'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-5, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% L'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-14, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% M'
case 12 % d
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(6, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% D
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(15, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Ecase -12 % d'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-6, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% D'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-15, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% E'case 16 % x (y)
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(8, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% r
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-5, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% L'case -16 % x'(y')
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-8, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% r'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(5, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Lcase 17 % y (z)
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(9, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% u
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-6, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% D'case -17 % y'(z')
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-9, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% u'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(6, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Dcase 18 % z (x)
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(7, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% f
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-4, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% B'case -18 % z'(x')
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(-7, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% f'
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(4, ...
blockIdx, axisBlock, cornerBlock, edgeBlock);
% Bendend
2.2 旋转公式小函数
function R = getRotateMatrix(alpha,beta,gamma)
% alpha,beta,gamma 为1或-1,分别表示顺时针转和逆时针转alpha = -pi/2*alpha;
beta = -pi/2*beta;
gamma = -pi/2*gamma;
Rx = [1,0,0;
0,cos(alpha),-sin(alpha);
0,sin(alpha),cos(alpha)];
Ry = [cos(beta),0,sin(beta);
0,1,0;
-sin(beta),0,cos(beta)];
Rz = [cos(gamma),-sin(gamma),0;
sin(gamma),cos(gamma),0;
0,0,1];
R = (Rx*Ry*Rz)';
end
2.3操作识别 咱们直接用魔方手法代号,让它自动转为上面的编号把
注:由于字符串里面不能再写
’
这个符号,所以我们用,
代替。比如RUR’U’
,代码里用RUR,U,
。function [optIdx,optNum] = getOptIdx(optList)optListNum = length(optList);
optNum = 0;
optIdx = zeros(optListNum,1);
for k = 1:optListNum
tmp = strfind('FRUBLDfrubldSMExyz',optList(k));
if ~isempty(tmp)
optNum = optNum+1;
optIdx(optNum) = tmp;
else
if optNum >0
optIdx(optNum) = -optIdx(optNum);
end
end
end
optIdx(optNum+1:end) = [];
end
3 显示模块 3.1 初始化 画一个未打乱的魔方
function H = initshowcube(axisBlock, cornerBlock, edgeBlock, ...
blockVertices, blockFace, color, colorAlpha)% 轴块
for n = 1:6
for f = 1:6
V = (axisBlock{
n}.position+blockVertices(blockFace{
f},:))*axisBlock{
n}.RotateMatrix;
C = color{
axisBlock{
n}.color(f)};
A = colorAlpha(axisBlock{
n}.color(f));
H.axis{
n}{
f} = patch('Faces',[1 2 3 4],'Vertices',V,'FaceColor',C,...
'FaceAlpha',A);
end
end% 棱
for n = 1:12
for f = 1:6
V = (edgeBlock{
n}.position+blockVertices(blockFace{
f},:))*edgeBlock{
n}.RotateMatrix;
C = color{
edgeBlock{
n}.color(f)};
A = colorAlpha(edgeBlock{
n}.color(f));
H.edge{
n}{
f} = patch('Faces',[1 2 3 4],'Vertices',V,'FaceColor',C,...
'FaceAlpha',A);
end
end% 角块
for n = 1:8
for f = 1:6V = (cornerBlock{
n}.position+blockVertices(blockFace{
f},:))*cornerBlock{
n}.RotateMatrix;
C = color{
cornerBlock{
n}.color(f)};
A = colorAlpha(cornerBlock{
n}.color(f));
H.corner{
n}{
f} = patch('Faces',[1 2 3 4],'Vertices',V,'FaceColor',C,...
'FaceAlpha',A);
end
endend
3.2 显示操作后的魔方
function showcube(H, axisBlock, cornerBlock, edgeBlock, ...
blockVertices, blockFace, color, colorAlpha)% 轴块
for n = 1:6
for f = 1:6
V = (axisBlock{
n}.position+blockVertices(blockFace{
f},:))*axisBlock{
n}.RotateMatrix;
C = color{
axisBlock{
n}.color(f)};
A = colorAlpha(axisBlock{
n}.color(f));
H.axis{
n}{
f}.Vertices = V;
H.axis{
n}{
f}.FaceColor = C;
H.axis{
n}{
f}.FaceAlpha = A;
end
end% 棱
for n = 1:12
for f = 1:6
V = (edgeBlock{
n}.position+blockVertices(blockFace{
f},:))*edgeBlock{
n}.RotateMatrix;
C = color{
edgeBlock{
n}.color(f)};
A = colorAlpha(edgeBlock{
n}.color(f));
H.edge{
n}{
f}.Vertices = V;
H.edge{
n}{
f}.FaceColor = C;
H.edge{
n}{
f}.FaceAlpha = A;
end
end% 角块
for n = 1:8
for f = 1:6
V = (cornerBlock{
n}.position+blockVertices(blockFace{
f},:))*cornerBlock{
n}.RotateMatrix;
C = color{
cornerBlock{
n}.color(f)};
A = colorAlpha(cornerBlock{
n}.color(f));
H.corner{
n}{
f}.Vertices = V;
H.corner{
n}{
f}.FaceColor = C;
H.corner{
n}{
f}.FaceAlpha = A;
end
endend
4 测试 简单测试
clear;
close all;
clc%% 基本定义(魔方几何信息) 尺寸颜色透明度之类的可以根据需要自己修改
blockVertices = [ 1,-1,-1;
1, 1,-1;
-1, 1,-1;
-1,-1,-1;
...
1,-1, 1;
1, 1, 1;
-1, 1, 1;
-1,-1, 1]*0.95;
blockFace{
1} = [1,2,3,4];
blockFace{
2} = [1,2,6,5];
blockFace{
3} = [2,3,7,6];
blockFace{
4} = [3,4,8,7];
blockFace{
5} = [4,1,5,8];
blockFace{
6} = [5,6,7,8];
% 6轴
axisPosList = [0, 0,-1;
1, 0, 0;
0, 1, 0;
-1, 0, 0;
0,-1, 0;
0, 0, 1]*2;
% 8角
cornerPosList = [1,-1,-1;
1, 1,-1;
-1, 1,-1;
-1,-1,-1;
...
1,-1, 1;
1, 1, 1;
-1, 1, 1;
-1,-1, 1]*2;
% 12棱
edgePosList = [1, 0,-1;
0, 1,-1;
-1, 0,-1;
0,-1,-1;
...
1, 1, 0;
-1, 1, 0;
-1,-1, 0;
1,-1, 0;
1, 0, 1;
0, 1, 1;
-1, 0, 1;
0,-1, 1]*2;
% 颜色定义 白 蓝 红 绿 橙 黄
color = {
[1,1,1],[0,0.2,0.8],[0.8,0,0],[0,0.8,0.2],[1,0.4,0],[1,1,0],[0.1,0.1,0.1]};
colorAlpha = [1,1,1,1,1,1,0.9];
% 初始槽位
blockIdx.axisIdx = [1,2,3,4,5,6];
blockIdx.cornerIdx = [1,2,3,4,5,6,7,8];
blockIdx.edgeIdx = [1,2,3,4,5,6,7,8,9,10,11,12];
%% 初始化
[axisBlock,cornerBlock,edgeBlock] = init(axisPosList,cornerPosList,edgePosList);
% 显示
figure('Position',[100,100,600,700])
axis off
axis equal
axis([-1,1,-1,1,-1,1]*4)
xlabel('x')
ylabel('y')
zlabel('z')
view([5,2,2])H = initshowcube(axisBlock, cornerBlock, edgeBlock, ...
blockVertices, blockFace, color, colorAlpha);
%% 操作
% 设置操作
optList = 'RUUR,U,RUR,U,RU,R,';
% 转为编号
[optIdx,optNum] = getOptIdx(optList);
% 循环转动
for k = 1:optNum
% 执行
[blockIdx, axisBlock, cornerBlock, edgeBlock] = operation(optIdx(k), blockIdx, axisBlock, cornerBlock, edgeBlock);
% 显示
showcube(H, axisBlock, cornerBlock, edgeBlock, ...
blockVertices, blockFace, color, colorAlpha)
pause(0.1)
end
效果图
文章图片
大家肯定发现了,这样实现的话缺少“动感”,给人感觉就是颜色在变,没有转动的感觉。
没错,下一期就一起来实现“动态旋转”。
其他
- 程序有bug,或有更好的提议,欢迎留言告诉我
- 代码录播视频见B站【三阶魔方】手把手从零实现,魔方观察训练程序(二)让魔方动起来
文章图片
推荐阅读
- 神经网络|广义回归神经网络GRNN(Matlab实现多输入多输出广义回归神经网络GRNN (含例子及代码))
- matlab|【优化求解】基于GUI界面之遗传算法优化求解【Matlab 180期】
- matlab|【路径规划】基于matlab模拟退火算法之求解火灾巡逻最短路径【含Matlab源码 252期】
- MATLAB完整学习过程|Matlab中脚本的运用
- matlab|matlab小波变换、离散小波变换函数使用
- 数学建模与Matlab|层次分析法及matlab代码
- 专升本_语文|如果你想专升本那就一定要看的专升本语文_文学常识完整版(四)
- 程序人生|三阶魔方自动求解及动态可视化matlab代码
- 论文学习|【目标检测】R-CNN