囊膜病毒|结构生物学家之痛:艾滋、新冠等囊膜病毒罪犯,为何长相如此不同( 四 )


参考文献
1. Yao, H. et al. Molecular architecture of the SARS-CoV-2 virus. Cell, doi:https://doi.org/10.1016/j.cell.2020.09.018 (2020).
2. Turoňová, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, eabd5223, doi:10.1126/science.abd5223 (2020).
3. Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, doi:10.1038/s41586-020-2665-2 (2020).
4. Zhang, X., Jin, L., Fang, Q., Hui, W. H. & Zhou, Z. H. 3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472-482, doi:10.1016/j.cell.2010.03.041 (2010).
5. Baker, T. S., Olson, N. H. & Fuller, S. D. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiology and molecular biology reviews : MMBR 63, 862-922 (1999).
6. Stass, R., Ng, W. M., Kim, Y. C. & Huiskonen, J. T. in Advances in Virus Research Vol. 105 (ed Félix A. Rey) 35-71 (Academic Press, 2019).
7. Fuller, S. D., Berriman, J. A., Butcher, S. J. & Gowen, B. E. Low pH induces swiveling of the glycoprotein heterodimers in the Semliki forest virus spike complex. Cell 81, 715-725, doi:https://doi.org/10.1016/0092-8674(95)90533-2 (1995).
8. Halldorsson, S. et al. Shielding and activation of a viral membrane fusion protein. Nature communications 9, 349, doi:10.1038/s41467-017-02789-2 (2018).
9. Fuller, S. D., Berriman, J. A., Butcher, S. J. & Gowen, B. E. Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex. Cell 81, 715-725 (1995).
10. Kuhn, R. J. et al. Structure of Dengue Virus: Implications for Flavivirus Organization, Maturation, and Fusion. Cell 108, 717-725, doi:https://doi.org/10.1016/S0092-8674(02)00660-8 (2002).
11. Zhang, X. et al. Cryo-EM structure of the mature dengue virus at 3.5-? resolution. Nature Structural & Molecular Biology 20, 105-110, doi:10.1038/nsmb.2463 (2013).
12. Halldorsson, S. et al. Shielding and activation of a viral membrane fusion protein. Nature Communications 9, 349, doi:10.1038/s41467-017-02789-2 (2018).
13. Dryden, K. A. et al. Native Hepatitis B Virions and Capsids Visualized by Electron Cryomicroscopy. Molecular Cell 22, 843-850, doi:https://doi.org/10.1016/j.molcel.2006.04.025 (2006).
14. Grünewald, K. et al. Three-Dimensional Structure of Herpes Simplex Virus from Cryo-Electron Tomography. Science 302, 1396, doi:10.1126/science.1090284 (2003).
15. Wang, N. et al. Architecture of African swine fever virus and implications for viral assembly. Science 366, 640, doi:10.1126/science.aaz1439 (2019).
16. Liu, J., Bartesaghi, A., Borgnia, M. J., Sapiro, G. & Subramaniam, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109-113, doi:10.1038/nature07159 (2008).
17. Zhao, G. et al. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643-646, doi:10.1038/nature12162 (2013).
18. Li, S. et al. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathog 12, e1005418, doi:10.1371/journal.ppat.1005418 (2016).
19. Hastie, K. M. et al. Structural basis for antibody-mediated neutralization of Lassa virus. Science 356, 923-928, doi:10.1126/science.aam7260 (2017).
20. Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394-397, doi:10.1038/nature24490 (2017).
21. Li, S. et al. A Molecular-Level Account of the Antigenic Hantaviral Surface. Cell Reports 15, 959-967, doi:https://doi.org/10.1016/j.celrep.2016.03.082 (2016).
22. Serris, A. et al. The Hantavirus Surface Glycoprotein Lattice and Its Fusion Control Mechanism. Cell, doi:https://doi.org/10.1016/j.cell.2020.08.023 (2020).
【囊膜病毒|结构生物学家之痛:艾滋、新冠等囊膜病毒罪犯,为何长相如此不同】23. Quemin, E. R. J. et al. Cellular Electron Cryo-Tomography to Study Virus-Host Interactions. Annu Rev Virol 7, 239-262, doi:10.1146/annurev-virology-021920-115935 (2020).

推荐阅读