Pandas实现聚合运算agg()的示例代码

目录

  • 前言
  • 1. 创建DataFrame对象
  • 2. 单列聚合
  • 3. 多列聚合
  • 4. 多种聚合运算
  • 5. 多种聚合运算并更改列名
  • 6. 不同的列运用不同的聚合函数
  • 7. 使用自定义的聚合函数
  • 8. 方便的descibe

前言 在数据分析中,分组聚合二者缺一不可。对数据聚合(求和、平均值等)通常是不可避免的。pd.agg()很方便进行聚合操作。

1. 创建DataFrame对象
import pandas as pddf1 = pd.DataFrame({'sex':list('FFMFMMF'),'smoker':list('YNYYNYY'),'age':[21,30,17,37,40,18,26],'weight':[120,100,132,140,94,89,123]})

Pandas实现聚合运算agg()的示例代码
文章图片

grouped = df1.groupby(['sex','smoker'])# sex有 F M 二值,smoker有 Y N 二值,故分成四组。


2. 单列聚合
grouped['age'].agg('mean')

sexsmokerFN30.0Y28.0MN40.0Y17.5Name: age, dtype: float64


3. 多列聚合
grouped.agg('mean')

Pandas实现聚合运算agg()的示例代码
文章图片

【Pandas实现聚合运算agg()的示例代码】
4. 多种聚合运算
grouped['age'].agg(['min','max'])

Pandas实现聚合运算agg()的示例代码
文章图片


5. 多种聚合运算并更改列名
grouped['age'].agg([('A','mean'),('B','max')])

Pandas实现聚合运算agg()的示例代码
文章图片


6. 不同的列运用不同的聚合函数
grouped.agg({'age':['sum','mean'], 'weight':['min','max']})

Pandas实现聚合运算agg()的示例代码
文章图片


7. 使用自定义的聚合函数
def Max_cut_Min(group):return group.max()-group.min()grouped.agg(Max_cut_Min)

Pandas实现聚合运算agg()的示例代码
文章图片


8. 方便的descibe
grouped.describe()

Pandas实现聚合运算agg()的示例代码
文章图片


参考博客:link
到此这篇关于Pandas实现聚合运算agg()的示例代码的文章就介绍到这了,更多相关Pandas 聚合运算agg()内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    推荐阅读