★MATLAB算法仿真经验|【车牌识别】基于GRNN广义回归神经网络的车牌识别matlab仿真

1.软件版本 matlab2013b
2.本算法理论知识 GRNN广义回归神经网络的理论基础是非线性核回归分析,非独立变量y相对于独立变量x的回归分析实际上是计算具有最大概率值的y。设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:
★MATLAB算法仿真经验|【车牌识别】基于GRNN广义回归神经网络的车牌识别matlab仿真
文章图片

【★MATLAB算法仿真经验|【车牌识别】基于GRNN广义回归神经网络的车牌识别matlab仿真】对于未知的概率密度函数f (x, y),可由x和y的观测样本经非参数估计得:
★MATLAB算法仿真经验|【车牌识别】基于GRNN广义回归神经网络的车牌识别matlab仿真
文章图片

★MATLAB算法仿真经验|【车牌识别】基于GRNN广义回归神经网络的车牌识别matlab仿真
文章图片

根据式子1和2可以得到:
★MATLAB算法仿真经验|【车牌识别】基于GRNN广义回归神经网络的车牌识别matlab仿真
文章图片

GRNN通常被用来进行函数逼近。它具有一个径向基隐含层和一个特殊的线性层。第一层和第二层的神经元数目都与输入的样本向量对的数目相等。GRNN结

    推荐阅读