PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路
下载地址 https://pan.baidu.com/s/1F0tGaU-kjMbBboXOA5tZkA
扫码下面二维码关注公众号回复 100088获取分享码
文章图片
本书目录结构如下:
第1章 简介篇..............................................................1
1.1 机器学习综述..............................................................1
1.1.1 任务....................................................................3
1.1.2 经验....................................................................5
1.1.3 性能....................................................................5
1.2 Python编程库..............................................................8
1.2.1 为什么使用Python........................................................8
1.2.2 Python机器学习的优势....................................................9
1.2.3 NumPy & SciPy..........................................................10
1.2.4 Matplotlib.............................................................11
1.2.5 Scikit-learn..........................................................11
1.2.6 Pandas.................................................................11
1.2.7 Anaconda...............................................................12
1.3 Python环境配置...........................................................12
1.3.1 Windows系统环境........................................................12
1.3.2 Mac OS 系统环境........................................................17
1.4 Python编程基础...........................................................18
1.4.1 Python基本语法.........................................................19
1.4.2 Python 数据类型........................................................20
1.4.3 Python 数据运算........................................................22
1.4.4 Python 流程控制........................................................26
1.4.5 Python 函数(模块)设计................................................28
1.4.6 Python 编程库(包)的导入..............................................29
1.4.7 Python 基础综合实践....................................................30
1.5章末小结..............................................................33
第2章 基础篇..............................................................34
2.1监督学习经典模型.........................................................34
2.1.1分类学习...............................................................35
2.1.1.1 线性分类器
2.1.1.2 支持向量机(分类)
2.1.1.3 朴素贝叶斯
2.1.1.4 K近邻(分类)
2.1.1.5 决策树
2.1.1.6 集成模型(分类)
2.1.2回归预测...............................................................64
2.1.2.1 线性回归器
2.1.2.2 支持向量机(回归)
2.1.2.3 K近邻(回归)
2.1.2.4 回归树
2.1.2.5 集成模型(回归)
2.2 无监督学习经典模型.......................................................81
2.2.1数据聚类......................................................81
2.2.1.1 K均值算法
2.2.2特征降维...............................................................91
2.2.2.1 主成分分析
2.3 章末小结.................................................................97
第3章 进阶篇...............................................................98
3.1 模型实用技巧.............................................................98?
3.1.1 特征提升...............................................................99
3.1.2 模型正则化............................................................111
3.1.3 模型检验..............................................................121
3.1.4 超参数搜索............................................................122
3.2 流行库/模型实践.........................................................129
3.2.1自然语言处理包(NLTK)................................................131
3.2.2 词向量(Word2Vec)技术................................................133
3.2.3 XGBoost模型...........................................................138
3.2.4 Tensorflow框架........................................................140
3.3 章末小结................................................................152
第4章 实战篇..............................................................153
4.1 Kaggle平台简介..........................................................153
4.2 Titanic罹难乘客预测.....................................................157
4.3 IMDB影评得分估计........................................................165
4.4 MNIST手写体数字图片识别.................................................174
4.5 章末小结................................................................180
【python|PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路】后记.....................................................................181
推荐阅读
- Python|Windows10+DroneKit+Python2.7
- 算法|一文看懂pytorch转换ONNX再转换TenserRT
- Python列表及其操作函数用法示例
- Python字面量详细用法
- Python If-else语句用法详解
- Python如何使用Lambda函数()
- Python关键字介绍
- Python历史记录和版本
- 如何安装Python(环境设置)(详细安装步骤图解)