目录
- 前言
- 分步代码
- 完整代码
前言 下载并安装 TensorFlow 2。将 TensorFlow 导入您的程序
注:升级 pip 以安装 TensorFlow 2 软件包。请参阅安装指南了解详细信息。
分步代码 【机器学习|从零完成深度学习手写图片分类任务】将 Tensorflow 导入您的程序:
import tensorflow as tffrom tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
加载并准备 MNIST 数据集。
mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")
使用 tf.data 来将数据集切分为 batch 以及混淆数据集:
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
使用 Keras 模型子类化(model subclassing) API 构建 tf.keras 模型:
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10)def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)# Create an instance of the model
model = MyModel()
为训练选择优化器与损失函数:
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)optimizer = tf.keras.optimizers.Adam()
选择衡量指标来度量模型的损失值(loss)和准确率(accuracy)。这些指标在 epoch 上累积值,然后打印出整体结果。
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
使用 tf.GradientTape 来训练模型:
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
# training=True is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))train_loss(loss)
train_accuracy(labels, predictions)
测试模型:
@tf.function
def step(images, labels):
# training=False is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)test_loss(t_loss)
test_accuracy(labels, predictions)
EPOCHS = 5for epoch in range(EPOCHS):
# Reset the metrics at the start of the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()for images, labels in train_ds:
train_step(images, labels)for test_images, test_labels in test_ds:
step(test_images, test_labels)print(
f'Epoch {epoch + 1}, '
f'Loss: {train_loss.result()}, '
f'Accuracy: {train_accuracy.result() * 100}, '
f'Test Loss: {test_loss.result()}, '
f'Test Accuracy: {test_accuracy.result() * 100}'
)
结果
Epoch 1, Loss: 0.13848990201950073, Accuracy: 95.81666564941406, Test Loss: 0.06706319749355316, Test Accuracy: 97.73999786376953
Epoch 2, Loss: 0.04312821477651596, Accuracy: 98.64666748046875, Test Loss: 0.052743155509233475, Test Accuracy: 98.2699966430664
Epoch 3, Loss: 0.022548513486981392, Accuracy: 99.29000091552734, Test Loss: 0.05303888022899628, Test Accuracy: 98.31999969482422
Epoch 4, Loss: 0.014073395170271397, Accuracy: 99.54499816894531, Test Loss: 0.06432698667049408, Test Accuracy: 98.3499984741211
Epoch 5, Loss: 0.009319018572568893, Accuracy: 99.67666625976562, Test Loss: 0.06866640597581863, Test Accuracy: 98.37999725341797
该图片分类器现在在此数据集上训练得到了接近 98% 的准确率(accuracy)。
完整代码
# import os
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
class Mymodel(Model):
def __init__(self):
super(Mymodel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
model = Mymodel()loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
# training=True is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))train_loss(loss)
train_accuracy(labels, predictions)
@tf.function
def step(images, labels):
# training=False is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)test_loss(t_loss)
test_accuracy(labels, predictions)EPOCHS = 5for epoch in range(EPOCHS):
# Reset the metrics at the start of the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()for images, labels in train_ds:
train_step(images, labels)for test_images, test_labels in test_ds:
step(test_images, test_labels)print(
f'Epoch {epoch + 1}, '
f'Loss: {train_loss.result()}, '
f'Accuracy: {train_accuracy.result() * 100}, '
f'Test Loss: {test_loss.result()}, '
f'Test Accuracy: {test_accuracy.result() * 100}'
)
推荐阅读
- #|LeetCode每日一题——593. 有效的正方形
- 机器学习|从零使用GAN(生成对抗网络)进行图像生成
- #|算法理论——快速幂思想(附例题)
- #|Python基础——强制类型转换及字符串
- python|Jupyter/IPython笔记本集合 !(附大量资源链接)-上篇
- 神经网络|文献阅读(03)Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
- 数据分析系列|数据分析系列之matplotlib库的使用
- 机器学习|吴恩达机器学习(五)神经网络 2/2 —— 反向传播算法(BP-神经网络)
- 人工智能|PyTorch视频理解利器!数行代码训练视频模型