建立涉及自然数的普通结果的有效性的过程是数学归纳法的原理。
工作规则令n0为固定整数。假设P(n)是一个涉及自然数n的语句, 我们希望证明P(n)对于所有n≥n0都是正确的。
1.归纳法基础:P(n0)为真, 即, 对于n = n0, P(n)为真。
2.归纳步骤:假设对于n = k, P(k)为真。那么P(K + 1)也必须为真。那么对于所有n≥n0, P(n)为真。
范例1:
通过数学归纳证明以下内容:
1 + 3 + 5 +.... + 2n - 1 = n2.
【数学归纳法】解决方案:让我们假设。
P (n) = 1 + 3 + 5 +..... + 2n - 1 = n2.For n = 1, P (1) = 1 = 12 = 1It is true for n = 1................ (i)
归纳步骤:对于n = r,
P (r) = 1 + 3 + 5 +..... +2r-1 = r2 is true......................... (ii)Adding 2r + 1 in both sidesP (r + 1) = 1 + 3 + 5 +..... +2r-1 + 2r +1= r2 + (2r + 1) = r2 + 2r +1 = (r+1)2..................... (iii)As P(r) is true. Hence P (r+1) is also true.From (i), (ii) and (iii) we conclude that.1 + 3 + 5 +..... + 2n - 1 =n2 is true for n = 1, 2, 3, 4, 5 ....Hence Proved.
范例2:12 + 22 + 32 + … … . + n2 =
解决方案:对于n = 1, P(1)= 12 == 1
n = 1时为真。
归纳步骤:对于n = r, … … … … .(i)P(r)= 12 + 22 + 32 + … … .. + r2 =是… … … ..(ii)
两边相加(r + 1)2, 我们得到P(r + 1)= 12 + 22 + 32 + … … . + r2 +(r + 1)2 = +(r + 1)2
由于P(r)为真, 因此P(r + 1)为真。根据(i), (ii)和(iii), 我们得出结论:
12 + 22 + 32 + … … + n2 =对于n = 1、2、3、4、5 … 是正确的, 因此被证明。
示例3:证明对于任何整数, n 11n + 2 + 122n + 1被133整除。
解:
Let P (n) = 11n+2+122n+1For n = 1, P (1) = 113+123=3059=133 x 23So, 133 divide P (1).................. (i)
归纳步骤:对于n = r,
P (r) = 11r+2+122r+1=133 x s............ (ii) Now, for n = r + 1, P (r+1) = 11r+2+1+122(r)+3=11[133s-122r+1] + 144. 122r+1= 11 x 133s + 122r+1.133=133[11s+122r+1]=133 x t........... (iii)As (i), (ii), and (iii) all are true, hence P (n) is divisible by 133.